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Abstract

Analysis of Composite Materials with Random Microstructure

by Jan Zeman

In this thesis, a comprehensive approach to the modelling of composite materials with
a microstructure exhibiting various types of disorder is proposed. In particular, a fibrous
graphite-epoxy composites with fibers randomly distributed within a transverse plane sec-
tion and plain weave fabric composites are addressed as representatives of such material
systems. Two different modelling strategies are examined. The first one assumes a well
defined geometry of the microstructure arrangement and specific boundary conditions. In
this framework, the complicated real microstructure is replaced by a substantially simpler
periodic unit cell, which statistically resembles the real microstructure in a suitable sense.
Periodic distribution of such unit cells is explored and the finite element method is called
to carry out the numerical computation. The theoretical basis for the second approach are
the Hashin-Shtrikman variational principles. The random character of the fiber distribu-
tion is incorporated directly into the variational formulation employing certain statistical
descriptors.

A number of statistical descriptors suitable for the microstructure characterization
of a random medium is examined first. Several methods for their determination are
proposed and tested for a simple theoretical model of a microstructure. Additionally,
a validity of various statistical hypotheses usually accepted for a random heterogenous
medium is checked for the real microstructure represented here by the graphite fiber tow
embedded into the polymer matrix. Next, a stochastic optimization algorithm based on
efficient combination of genetic algorithm essentials with basic concepts of the simulated
annealing method is introduced.

Suitable optimization procedure formulated in terms of the selected statistical de-
scriptors is proposed to derive the desired unit cell. Several numerical experiments are
performed to demonstrate the applicability of the selected optimization method to this
complicated optimization problem. A number of numerical studies is performed to quan-
tify individual unit cells. The objective is to identify a number of particles required for
specific problems to provide a sufficiently accurate representation of the behavior of real
composites. A standard problem of deriving the effective mechanical properties is con-
sidered first. A general approach permitting either strain or stress control is pursued. It
is observed that the unit cell consisting of five fibers only provides reasonably accurate
estimates of the macroscopic properties. Similar conclusions apply to the thermal, linear
and non-linear viscoelastic problems considered next.

In certain applications the finite element approach used with the unit cell analysis may
prove to be unnecessary expensive. In such a case, one may appreciate well-known effec-
tive medium theories where applicable. Here, the most widely used variational principles
of Hashin and Shtrikman extended to account for the presence of various transformation
fields defined as local eigenstrain or eigenstress distributions in the phases are revisited.
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Random character of fibers arrangement is described here by the two-point probabil-
ity function. When used with the Hashin-Shtrikman variational principles this function
provides sufficient information for obtaining bounds or estimates on the effective material
properties of real composites with statistically homogeneous microstructures. The Fourier
transform-based approach is successfully implemented when solving the resulting equa-
tions. An extensive comparison with the finite element-based methodology is presented
to investigate the applicability and limitations of this modelling strategy.

The extension of principles proposed for the determination of statistically optimized
periodic unit cell to the modelling of plain-weave composites is proposed. Again, the
parameters of the idealized periodic unit cell are found by matching appropriate statis-
tical descriptors related to the target microstructure and two-dimensional cross-section
of the geometry model. In particular, the ability to incorporate a longitudinal shift of
individual layers of the composite system into the model of the periodic unit cell is exam-
ined. Geometrical parameters derived from the optimization procedure are then used to
generate an equivalent periodic unit cell, which is then combined with the finite element
method analysis to provide the desired effective material properties. Finally, an example
of application of Hashin-Shtrikman based homogenization to study the prestress effects
on failure behavior of a braided weave composite system is presented.
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Abstrakt

Analýza kompozitńıch materiál̊u s náhodnou mikrostrukturou

Jan Zeman

Tématem prezentované práce je problematika modelováńı kompozitńıch materiál̊u s
nepravidelnou mikrostrukturou. V práci jsou využity dva r̊uzné př́ıstupy k analýze těchto
materiálových systémů. V prvńım př́ıpadě uvažujeme heterogenńı materiály s jasně defi-
novanou geometríı, kdy skutečnou komplikovanou mikrostrukturu nahrazujeme podstatně
jednodušš́ı periodickou jednotkovou buňkou, která nicméně do jisté mı́ry reprezentuje
p̊uvodńı materiál ve smyslu zvoleného statistického deskriptoru. Periodicita jednotkové
buňky je následně využita pro efektivńı numerickou simulaci metodou konečných prvk̊u.
Teoretickým základem druhého př́ıstupu jsou rozš́ı̌rené Hashin-Shtrikmanovy variačńı
principy. V tomto př́ıpadě je náhodnost mikrostruktury př́ımo zahrnuta do variačńı for-
mulace ve formě vhodných statistických deskriptor̊u.

Nejprve jsou popsány statistické deskriptory vhodné pro popis mikrostruktury náho-
dných heterogenńıch materiál̊u spolu s algoritmy vhodnými pro určeńı těchto deskriptor̊u
pro digitalizované obrazy skutečných kompozit̊u. Důraz je přitom kladen na př́ıpadnou
anizotropii mikrostruktury. Přesnost a efektivita těchto metod jsou demonstrovány jak
pro teoretický model mikrostruktury, tak i pro digitalizované obrazy skutečných materiál̊u.
Následně je detailně popsána globálńı stochastická optimalizačńı metoda, kombinuj́ıćı
principy genetických algoritmů, rozš́ı̌reného simulovaného ž́ıháńı a diferenciálńı evoluce,
která je užita pro řešeńı optimalizačńıch problémů uvažovaných v této práci.

Parametry ekvivalentńı periodické jednotkové buňky na mikroúrovni plynou z řešeńı
optimalizačńıho problému, formulovaného na základě porovnáńı statistických deskrip-
tor̊u vztažených k ekvivalentńı jednotkové buňce a ćılové mikrostruktuře. Vhodnost zv-
olené optimalizačńı metody je demonstrována na několika testovaćıch př́ıkladech. Kvalita
výsledných jednotkových buněk je následně zkoumána z hlediska celkové odezvy daného
kompozitńıho materiálu. Jako prvńı uvažujeme problém určeńı efektivńıch lineárně pruž-
ných vlastnost́ı kompozitu. Je podána obecná formulace tohoto problému s uvážeńım
možnosti zat́ıžeńı celkovou deformaćı nebo napět́ım. Uvedené výsledky ukazuj́ı, že jed-
notková buňka obsahuj́ıćı pět až deset vláken reprezentuje celkovou odezvu s dostatečnou
přesnost́ı. Obdobné závěry plynou i pro efektivńı součinitele tepelné roztažnosti a pro
lineárńı i nelineárńı vazkopružnost.

Pro některé aplikace (např́ıklad simulace rozsáhlých kompozitńıch konstrukćı) se může
analýza založená na metodě konečných prvk̊u ukázat př́ılǐs časově i výpočetně náročnou.
V tomto př́ıpadě lze efektivně využ́ıt jednodušš́ıch př́ıstup̊u mechaniky kompozitńıch ma-
teriál̊u. Př́ıkladem těchto metod jsou Hashin-Shtrikmanovy variačńı principy, rozš́ı̌rené
o př́ıpadný vliv transformačńıch poĺı, uvažovaných v této práci. Náhodný charakter
uspořádáńı vláken kompozitu je v tomto př́ıpadě zohledněn dvojbodovou pravděpodob-
nostńı funkćı. Kombinace této informace s Hashin-Shtrikmanovými variačńımi prin-
cipy následně umožňuje źıskat meze nebo odhady efektivńıch vlastnost́ı kompozit̊u se
statisticky homogenńı mikrostrukturou. Źıskané výsledky jsou porovnány s aproximaćı
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metodou konečných prvk̊u. Pro daný materiálový systém se př́ıstup založený na Hashin-
Shtrikmanových variačńıch principech velmi dobře shoduje pro problémy lineárńı pružnosti,
součinitele tepelné roztažnosti a lineárńı vazkopružnosti; rozd́ıl mezi oběma př́ıstupy je
nicméně dosti značný pro kompozit s nelineárně vazkopružnou matrićı.

Dále je studována možnost aplikace princip̊u použitých pro definici statisticky optimal-
izované mikroskopické periodické jednotkové buňky na modelováńı kompozit̊u vyztuže-
ných tkaninou plátnové vazby. Důraz je kladen na možnost zohledněńı vzájemného posunu
a r̊uzných tlouštěk jednotlivých vrstev kompozitu. Geometrické parametry jednotkové
buňky na mezoúrovni, źıskané z obdobného optimalizačńıho problému jako v p̊uvodńım
př́ıpadě, jsou následně použity pro vytvořeńı konečněprvkového modelu jednotkové buňky
a źıskáńı koeficient̊u efektivńı elastické matice tuhosti. Výsledky této analýzy ukazuj́ı, že
navržená metoda je vhodná pro v́ıcevrstvé kompozity s r̊uznou výškou jednotlivých lamin
za předpokladu, že posun jednotlivých vrstev neńı př́ılǐs velký nebo je roven přibližně
polovině š́ı̌rky buňky. V opačném př́ıpadě se zdá být nevyhnutelné uvažovat kompliko-
vaněǰśı dvojvrstvou jednotkovou buňku. Na závěr této práce je prezentováno užit́ı homog-
enizace kombinuj́ıćı metodu konečných prvk̊u a Hashin-Shtrikmanovovy variačńı principy
pro analýzu vlivu předpnut́ı výztuže na porušeńı kompozitńı trubky s komplikovanou
mikro i mezostrukturou.
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General notation

a Vector
a Second-order tensor
A Fourth-order tensor
aijbi Summation with respect to i, i.e.

∑
i aijgi

a · b Simple contraction, i.e.,
∑

j aijbj = aijbj
A : a Double contraction, i.e

∑
kl Aijklakl = Aijklakl

Tr a Trace of a second order tensor a
{a} Column vector or vectorial representation of

symmetric second-order tensor
[A] Matrix or matrix representation of symmetric fourth-order tensor

{a}T, [A] T Transpose of vector or matrix

[A]−1 ,a−1,A−1 Inverse of matrix, second or fourth-order tensors
‖a‖ Eucleidian norm of a
|A| Volume/area of domain A
∂A Boundary of domain A

d Problem dimension, d = 2, 3
DFT{f}(ξ) Discrete Fourier transform of data f

f,i Partial derivative ∂f/∂xi

f̃(ξ),F (f) (ξ) Fourier transform of function f
F−1 (f) (x) Inverse Fourier transform of function f
IDFT{f} Inverse discrete Fourier transform of the data

O Order of growth

δ Dirac’s delta function
δij Kronecker’s delta

Constitutive models

aσ Stress shift function
A Material parameter of Leonov’s model
e Deviatoric part of strain tensor
Eµ Young’s modulus of the µ-th Maxwell unit

Ê Time-dependent Young’s modulus of generalized Maxwell’s model
Gµ Shear modulus of the µ-th Maxwell unit

Ĝ Time-dependent shear modulus of Leonov’s model
K Bulk modulus
L Fourth-order material stiffness tensor
{m} Vector of coefficients of thermal expansion
M Number of units in generalized Maxwell models
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Constitutive models

M Fourth-order material compliance tensor
s Deviatoric part of stress tensor

[Tε] Strain transformation matrix
[Tσ] Stress transformation matrix
yµ Viscous resistance coefficients of the µ-th Maxwell unit
Yij Strength value with respect to stress state σij

αi Coefficient of thermal expansion in direction i
ε Second-order tensor of small deformations
η0 Zero shear viscosity
ηµ Shear viscosity of the µ-th Maxwell unit
θ Temperature

Θµ Retardation time
λ Second-order eigenstress tensor
µ Second-order eigenstrain tensor
ν Poisson’s ratio
σ Second-order stress tensor
σm Mean stress
σµ Stress in the µ-th Maxwell unit
τ0 Material parameter of Leonov’s model
τeq Equivalent shear stress

Quantification of microstructure morphology

f(x) Ensemble average of function f(x, α)
〈f(x, α)〉 Spatial average of function f(x, α)

cr Volume fraction of phase r
Dr(α) Domain occupied by phase r in sample α
f Fiber phase
H Number of bitmap rows (bitmap height)

Lr(x1,x2) Lineal path function for phase r
m Matrix phase
n Number of phases
Nd Number of rays of sampling template
N`(i) Number of pixels in the i-th sampling ray
rij Length of vector xij

R Fiber diameter
S Set of material samples

Srs(x1,x2) Two-point probability function for phases r and s
TH Height of sampling template
TW Width of sampling template
W Number of bitmap columns (bitmap width)
xij Difference xj − xi

Y Periodic unit cell
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Quantification of microstructure morphology

α Index of sample
∆H ,∆W Sampling template steps
χr(x, α) Characteristic function for phase r and sample α

Stochastic optimization

F Objective function
chij(t) Gene j of CHi(t)
CHi(t) Chromozome i of generation t
I(t) Individual of generation t
L Lower bound on optimized variables
N Dimension of optimization problem
t Number of generations
T Algorithmic temperature

u(a, b) Real random variable with uniform distribution
on closed interval 〈a; b〉

u[a, b] Integer random variable with uniform distribution
on closed interval 〈a; b〉

U Upper bound on optimized variables

b Shape parameter of non-uniform mutation
num_counter_max Maximal number of function calls for one cooling step

num_dif_max Maximal number of differential crossover applications
num_success_max Maximal number of replaced individuals for one cooling step

p_bnd_mut Probability of selection of boundary mutation operator
p_dif_crs Probability of selection of differential crossover operator
p_mnu_mut Probability of selection of multi non-uniform mutation operator
p_nun_mut Probability of selection of non-uniform mutation operator
p_sar_crs Probability of selection of simple arithmetic crossover operator
p_smp_crs Probability of selection of simple crossover operator
p_uni_mut Probability of selection of uniform mutation operator
p_war_crs Probability of selection of whole arithmetic crossover operator
pop_size Size of population

q Probability of selection of best individual
T_frac Ratio determining initial temperature

T_frac_min Ratio determining minimal temperature
T_mult Temperature ratio of cooling schedule

Microscale modelling via periodic fields

{br} Thermal stress concentration vector of phase r
B Set of admissible vectors xN

[B] Strain-displacement matrix
[Br] Mechanical stress concentration matrix of phase r
E Overall strain tensor (with respect to Y )
{f} Vector of generalized nodal forces
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Microscale modelling via periodic fields

{fe} Vector of generalized element nodal forces
FD Objective function related to statistical descriptor D

H1, H2 Dimensions of periodic unit cell
imax, jmax Matching range of Smm-based objective function

[K] Stiffness matrix
[Ke] Element stiffness matrix[
Lfem

]
Finite element approximation to homogenized stiffness matrix

Lhom Effective (homogenized) stiffness tensor[
Mfem

]
Finite element approximation to homogenized compliance matrix

Mhom Effective (homogenized) compliance tensor
N Number of particles in periodic unit cell
[N] Matrix of finite element shape functions
Ne Number of elements
{r} Vector of nodal values of fluctuating displacement
u∗ Fluctuating displacement in Y
V Heterogeneous body
xN Vector storing position of particles in periodic unit cell
Y Microscale periodic unit cell

∇S Symmetric part of gradient
ε∗ Fluctuating strain in Y
η Ratio H1/H2

Σ Overall stress tensor (with respect to Y )
{Λfem} Finite element approximation to overall eigenstress vector
{Υfem} Finite element approximation to overall eigenstrain vector

Microscale modeling via extended Hashin-Shtrikman variational principles

[Ars] Microstructure-dependent matrices for primary principle
[Brs] Microstructure-dependent matrices for dual principle
L0 Stiffness tensor of a reference medium[
LHS
]

Hashin-Shtrikman approximation to homogenized stiffness matrix
M0 Compliance tensor of a reference medium[
MHS

]
Hashin-Shtrikman approximation to homogenized compliance matrix

U(·, ·) Primary Hashin-Shtrikman functional
V Representative volume

V (·, ·) Dual Hashin-Shtrikman functional

ε∗
0 Strain Green’s function

γ Strain polarization tensor
{ΛHS} Hashin-Shtrikman approximation to overall eigenstress vector

σ∗
0 Stress Green’s function

τ Stress polarization tensor
{ΥHS} Hashin-Shtrikman approximation to overall eigenstrain vector



Notation xvii

Mesoscale modeling via periodic fields

a Mesoscale unit cell half-width
a` Quantity in local coordinate system
ag Quantity in global coordinate system
b Bundle height in mesoscale unit cell[
B̂
]

Rotated displacement-strain matrix

Emeso Overall strain tensor (with respect to Ymeso)
FD Objective function related to statistical descriptor D
g Gap between bundles in mesoscale unit cell

[G] Matrix of periodic boundary conditions
h Mesoscale unit cell height
H Number of bitmap rows (bitmap height)
[P] Matrix relating displacements on opposite unit cell faces

{r}meso Vector of nodal values of fluctuating displacement
stow Tow surface function
swarp Warp surface function
u∗meso Fluctuating mesoscale displacement in Ymeso

W Number of bitmap columns (bitmap width)
Ymeso Mesoscale periodic unit cell

ε∗meso Fluctuating mesoscale strain in Ymeso

ρ Penalization parameter
Σmeso Overall stress tensor (with respect to Ymeso)
θfill

y Angle of fill bundle rotation
θwarp

y Angle of warp bundle rotation
χf Bundle characteristic function

ψ, ϑ, ϕ Euler angles



Chapter 1

INTRODUCTION AND STATE OF THE ART

The doubtless benefits offered by composite materials such as a high strength, light
weight, non-corrosive properties and design flexibility resulted in an extensive use of these
materials in diverse applications in aerospace, aircraft and automobile industry in last
decades. Recently, these materials have drawn an attention in Civil Engineering industry
primarily in conjunction with rehabilitation and repair of concrete and masonry structures.
An endless search for reliable and low cost structural and material systems resulted in
inexpensive fabrication methods, such as, e.g., resin transfer moulding allowing production
of complex shapes and large components, which have made composites affordable to
other applications such as facade and structural parts of both commercial and industrial
buildings and even bridges.

It is a well-understood and widely accepted fact that an overall response of such struc-
tures is highly influenced by both the material behavior and geometrical arrangement of
distinct phases of the composite system and, as suggested by Fig. 1.1, such a research
venture inevitably involves analyses on different length scales. However, each scale of
modeling is typically several orders of magnitude smaller that the preceding one, which
makes the direct “brute force” approach, relying on detailed description of the whole
structure with all details present, practically intractable even on modern powerful com-
puters. Therefore, to obtain a realistic prediction of the behavior of the whole structure,
we need suitable solution strategies which efficiently combine the analysis on individual
scales of the structure together with a reliable transfer of the appropriate information be-
tween various modeling levels. This calls for hierarchical or adaptive multi-scale modeling
starting with analysis on the macroscale, represented by a large structural element, hav-
ing certain effective or macroscopic properties derived for the analysis on the mesoscale,
e.g., on the level on individual tows of a textile composite, which, of course, depend on
the distribution of local fields on the level of individual constituents, referred to as micro
scale.

Another complication comes from the fact that the microstructural configuration on
individual levels is apparently disordered and does not comply with idealized geometries
frequently encountered in the literature. Formally, this difficulty can be resolved by an-
alyzing the so-called representative volume elements (RVEs) on each scale which, loosely
speaking, are samples of a microstructure large enough to suitably reflect the stochastic
fluctuations of material properties on the pertinent scale. The requirement of computa-
tional feasibility, on the other hand, calls for as small sizes of the RVE as possible. During
the last forty years, several definitions have been proposed to quantify more rigorously
the size of the RVE:

Hill (1963)[94] This phrase (the RVE) will be used when referring to a sample that (a) is
structurally entirely typical of the whole structure on average, and (b) contains
sufficient number of inclusions for the apparent overall moduli to be effectively
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Macroscale level ≈ 100 m
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Figure 1.1: A scheme of three-scale modeling
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independent of the surface value of traction and displacement, so long as these
values are “macroscopically uniform”.

Hashin (1983)[88] The RVE is a model of the material to be used to determine the
corresponding effective properties of the homogenized macroscopic model. The RVE
should be large enough to contain sufficient information about the microstructure in
order to be representative, however it should be much smaller than the macroscopic
body.

Drugan and Willis (1996)[49] The RVE is the smallest material volume element of
the composite for which the usual spatially constant “overall modulus” macroscopic
constitutive representation is a sufficiently accurate model to represent the mean
constitutive response.

Ostoja-Starzewski (2001)[188] The RVE is very clearly defined in two situations only:
(i) it is a unit cell of a periodic microstructure, and (ii) volume containing a very
large set of microscale elements, possessing statistically homogeneous and ergodic
properties.

Stroeven, Askes and Sluis (2002)[239] The determination of the RVE size is by no
means straightforward. It depends on the material under consideration, but also on
the structure sensitivity of the physical quantity that is measured. Normally, elastic
moduli are taken as the governing parameter, however, other quantities can also be
taken, such as energy dissipation in case of microstructural cracking.

The main goal of the present thesis is to introduce and justify an alternative approach
to the RVE definition, which essentially relies on microstructural statistics. In particular,
the original microstructure configuration is characterized by suitable statistical descrip-
tors and then a simplified periodic unit cell is found such that it approximates the target
microstructure as close as possible in terms of selected statistical descriptors. There are
definitely several interesting features, supporting this notion of the RVE: (i) it leads to a
natural sequence of periodic unit cells with increasing complexity, (ii) it exploits the well-
known relationship between effective behavior of composite materials and microstructural
statistics (a topic addressed in in this thesis as well, see Chapter 4), (iii) resulting periodic
unit cells have well-defined geometry, can be directly used for numerical homogenization
techniques without the need of stochastic simulations, (iv) the numerical assesment can be
performed for a selected quantity of interest to choose an appropriate size of the represen-
tative volume, (v) since the microstructure of the periodic unit cells is optimized, a quick
convergence of the quantity of interest can be expected. The assumption of microstructure
periodicity, on the contrary, may appear to be rather artificial and inappropriate for real
materials; the recent numerical studies of Terada et al. [251] as well as theoretical analyses
of Sab [221] and Ohwadi [189] revealed that the periodicity conditions are surprisingly
well suited for the analysis of materials with disordered microstructure.

To successfully implement and verify the present definition of the RVE, a variety of
tools and ideas coming from different branches of science needs to be explored: namely, the
quantification of microstructure morphology, stochastic optimization algorithms, homog-
enization of heterogenous materials, variational principles for composites with disordered
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microstructure and the numerical methods for the modeling of textile composites will be
combined to attain the goal we set. In the following, we introduce and discuss each of
these topics in more details.

1.1 RVE definition and analysis of microstructure morphology

Since a rather detailed overview and discussion of the RVE definition was given in the
introductory part, we start this section by giving only a few clarifying remarks. The
concept of the Representative Volume Element was first established by Hill in one of his
fundamental works [94]. Much later, the ideas present in Hill’s definition were gener-
alized by Huet [106], who extended these results for bodies which are smaller than the
Representative Volume by introducing a notion of apparent overall properties. He also
derived several useful relations for apparent elastic properties of samples with varying
size. The work was further extended to incorporate boundary condition effects by Haz-
anov and Huet [91] for elastic bodies, by Huet [107] for the case of viscoelasticity and
by Jiang et al. [116] for elasto-plastic composites. The numerical assesment complement-
ing the theoretical analysis can be, e.g., found in works [187, 196]. The analysis of the
“goal-dependent” minimum RVE size, initiated by Drugan and Willis [49], received a con-
siderable attention in the last few years. On the theoretical level, it was further refined
by Drugan [48], who incorporated higher order effects neglected in the original work. The
numerical validation was performed by Gusev [85] for three-dimensional linear elasticity
and by Rend and Zheng [209] for polycrystalline materials, the extension to nonlinear
material behavior was studied by Stroeven et al. [239]. The idea of incorporating the
microstructural information into the definition of the RVE was, to author’s best knowl-
edge, first proposed in the work of Povirk [202] for a rather artificial material system
and further extended by Zeman and Šejnoha [298] for analysis of real materials described
by isotropic microstructural function. Somehow related approach, relying on computer
generation of hard-core model with varying particle sizes mimicking real microstructures,
was independently proposed by Shan and Gokhale [225].

There is an enormous amount of literature on description and quantitative analysis of
the morphology of random heterogenous media. Apart from obvious goal of simulating
disordered microstructures experimentally observed in real materials, this research has
been fueled by the fact that these statistical descriptors arise in rigorous bounds of diverse
physical quantities, see, e.g., the pioneering work of Beran [18, and references therein].
Due to such a wide range of topics, it is almost impossible to review the subject adequately;
instead of this, we focus on problems touched in the present work and refer an interested
reader to book of Stoyan et al. [238] and recent Torquato’s monograph [257] or the overview
article [255] for further discussion.

In particular, the approach followed in the discussion of the n-point probability func-
tion is due to Torquato and Stell [258]; the notion of the lineal path function was in-
troduced by Lu and Torquato [147]. The pioneering work devoted to determination of
n-point probability functions for micrographs of real media is attributed to Corson [39].
Despite the fact that his procedure was rather cumbersome (it was based on manual
evaluation of photographs taken from samples of the real material) the principle itself
(evaluation of the characteristic function on some sampling grid and then averaging the
corresponding values) was used and extended in following works. Berryman [19] auto-
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mated the Corson’s procedure by image processing techniques, simple simulation method
for the determination of functions Sn, suitable for non-digitized media as well, was pro-
posed by Smith and Torquato [232]. Note that a similar approach is employed in this
work for the determination of the lineal path function.

In the last decade, an increasing attention is paid to combination of microstructure
quantification with stochastic or deterministic numerical simulation to capture, at least
quantitatively, deformation processes, such as plasticity or damage, in real materials.
Pyrz [205] investigated relation between radial distribution function and stress distribu-
tion in fiber reinforced composites, Axelsen in his Ph.D. thesis [7] proposed a classifica-
tion scheme of different microstructural configuration together with an efficient method
for the evaluation of stress fields, Babuška et al. [10] presented detailed microstructural
analysis of fiber-reinforced composites combined with extensive numerical simulation to
obtain statistics of peak stresses to predict the damage propagation in fibrous composites,
Li et al. [145] used the lineal path function characterization together with the radial dis-
tribution function and the Voronroi tessellation method to characterize three-dimensional
particle reinforced metal matrix composites, Buryachenko et al. [29] compared the statis-
tical parameters and overall response of numerically simulated and real microstructures,
and the list is by no means complete.

The subject of the present thesis is also closely related to the problem of reconstruct-
ing random media with the specified microstructural function. In particular, Rintoul
and Torquato [211] proposed a method for reconstruction of particulate systems based
on the radial distribution function and the Simulated Annealing method. This work
was further extended by Yeong and Torquato [291], where the isotropized lineal path
and the two-point probability functions were used in the reconstruction process; the
problems of three-dimensional microstructures reconstruction from two-dimensional cross-
sections [292] and real-world materials [152, 247] were also considered. The importance
of using non-isotropized descriptors was recognized and addressed in [41] and further ex-
tended in [226], where the hexagonal grid sampling was advocated. Finally, the recent
work of Rozman and Utz [216, 217] revealed that the non-uniqueness problems, reported
in previous studies, can be, to a great extent, attributed to the artificial isotropy of
optimized function and to convergence of the selected optimization method to a local
minimum.

1.2 Stochastic optimization methods

In general, the optimization algorithms can be divided into two large groups: local opti-
mization methods, that operate on a single potential solution and look for some improve-
ments in its neighborhood, and global optimization techniques – represented here by so
called evolutionary methods – that maintain large sets of potential solutions and apply
recombination and selection operators to obtain better solution. During the last decades,
evolutionary methods have received a considerable attention and experienced a rapid de-
velopment, mainly due to their simplicity, versatility and remarkable robustness. Namely,
the Genetic Algorithms, Simulated Annealing and the Differential Evolution established
themselves as the most prominent representatives of stochastic optimization algorithms.
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Genetic Algorithms (GAs). This class of evolutionary methods is formulated on
the basis of analogy with the real-world genetic processes of biological organisms – the
evolution and self-organization of natural systems over many generation according to the
principle of natural selection and “survival of the fittest” paradigm. In reality, individuals
of one population compete with each other for limited natural resources and for attracting
a mate. Those which succeed in obtaining resources and attracting mates will have a large
number of offsprings, while individuals performing poorly will produce smaller number of
descendants and eventually die out. As a result of this process, the abilities of successful
individuals are more likely to be passed to following generations and result in better
adaption to the environment. GAs closely mimic all these natural processes – they work
with a whole population of individuals, each representing a solution to a given problem. A
score or fitness is assigned to each individual depending on how good solution it presents.
The individuals with higher fitness are more likely to be reproduced by crossover and to
pass their characteristics to their offsprings. Moreover, an individual can also undergo a
mutation if appropriate. In this way, over a number of successive populations, the good
characteristic of individuals are mixed and spread over all population, so that it converges
to the optimal solution.

The earliest work on this subject was in fact Darwin’s Origin of Species where the
fundamental role of aforementioned principles was first revealed. The basic ideas of GAs
were first rigorously laid down by Holland [99], the detailed discussion on these methods
can be found, e.g., in [14, 81, 138, 159, 164]. Note that in their classical formulation, GAs
work with the binary representation of optimized variables, which is not always very well
suited for real-world problems. To overcome this difficulty, Michalewicz in [160] proposed
a variant of GAs, which uses the floating-point representation of searched variables and
demonstrated the superiority of the real-encoded operators for a wide range of constrained
and unconstrained optimization problems.

Simulated Annealing (SA). The motivation of the Simulated Annealing method
comes from physical rather than biological principles; it effectively explores the analogy
between optimization problem and the annealing process of solid bodies. In the physi-
cal process of annealing the temperature of a solid is kept rather high initially and then
decreases sufficiently slowly so that the individual particles have the possibility to attain
the state with the minimal energy for a given constant temperature. As the temperature
gradually decreases the energy of the whole body decreases as well and finally reaches the
minimum value. SA algorithm works on the same principle - initial solution is created
randomly, some artificial parameter called temperature is set to a starting value and new
solutions are randomly generated. If the new solution is better than the preceding one in
terms of fitness, it is accepted automatically and replaces the original solution. However,
even if the new solution is worse, it still has a chance to replace the original solution (the
probability depends on the difference of objective function and the actual temperature),
which enables the solution to escape from a local minimum. This procedure is repeated a
number of times for a constant temperature and then the temperature is decreased until
it reaches certain prescribed minimal value. This version of algorithm was first proposed
by Kirkpatrick et al. [120] and independently by Černý [265]. Detailed discussion of basic
principles and further aspects of the Simulated Annealing method can be found, e.g.,
in [108, 109, 138].
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To solve complex optimization problems, Mahfoud and Goldberg [150, 151] introduced
the efficient combination of GAs and SA methods. This algorithm exploits the essentials
of GAs (a population of chromozomes, rather than a single point in space is optimized)
together with the basic concept guiding the search towards minimal energy states. Some
additional suggestions and implementation issues of this method are also given in [138,
Chapter 6].

Differential Evolution (DE). This evolutionary algorithm has been recently proposed
as an efficient solution method for the Chebychev trial polynomial problem by Storn and
Price [237]. It can be generally described as a simplified real-encoded genetic algorithm –
this method operates directly on real valued chromozomes and uses the so-called differen-
tial operator, which replaces the role of the cross-over in the standard genetic algorithm.
In particular, it generates a new individual by adding the weighted difference between two
randomly chosen individuals in a population to a third vector. The mutation operator
as well as selection mechanism are completely neglected. The main advantage of this
method is its conceptual simplicity and good convergence properties for objective func-
tions with relatively small number of parameters. The numerical experiments reported
by Hrstka and Kučerová [103] revealed, however, that performance of the Differential
Evolution method experiences a substantial deterioration for optimization problems with
a large number of variables. On the other hand, the remarkable performance of the differ-
ential crossover operator was fully confirmed. More details together with the description
of further modification of this evolutionary optimizer can be found in [236, 237].

1.3 Multiscale modeling

The multiscale computational strategies can be divided into two basic categories: the
uncoupled approach, where the problems on individual scales are solved separately and
the output from one scale, e.g., the average stress or strain, is used as the input for the
analysis on the second one and the coupled approach, where the whole structure with all
significant details is modeled.

As already mentioned in the introduction, the fully coupled approach in not com-
putationally feasible except for simple geometries (including problems with periodic mi-
crostructure) or for structures with not very different lengthscales. A variety of efficient
and sophisticated solution techniques, exploiting the multiscale nature of the problem,
were proposed in the last decade. The multiresolution analysis was employed by Brewster
and Beylkin [26] and Dorobantu and Engquist [47] to obtain hierarchical representa-
tion of solution on individual levels of a structure, the application of multigrid methods
for numerical homogenization is discussed, e.g., in the work of Neuss et al. [179] while
the aggregation-based multilevel solver was implemented by Fish and Belsky [65] and
Fish et al. [71]. Hackbusch and Sauter [87] introduced the notion of composite finite
element to study problems on domains containing small geometrical details. Finally,
Hou and Wu discuss in [101] a general multiscale finite element method, where the ba-
sis functions are constructed to directly accommodate the local distribution of material
parameters.

The rigorous analysis of a coupled problems with periodic microstructure based on
the Fourier transform techniques was presented in the work of Morgan and Babuška [170,
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171]; their theoretical results were recently successfully implemented within the frame-
work of the generalized finite element method by Matache et al. [155] and Matache and
Schwab [156]. Similar principles were employed in several physically motivated finite el-
ement definitions fitted to a special microstructure, see, e.g, the works of Meguid and
Hu [158] and Haan et al. [86]. Employing the ideas of uncoupled modeling approach,
Fish and Belsky proposed an efficient multigrid procedure for the multiscale analysis of
problems with periodic microstructure [63, 64].

The enormous computational burden of fully coupled approach can be, of course,
reduced by exploiting the adaptive modeling, i.e., only the most critical parts of the an-
alyzed structure are modeled in very details. If the location of such regions is known
a priori, as, for example, in the case of sharp corners or notches, the mesh overlay tech-
niques can be advantageously used, see, e.g., extensive overview of Fish and Shek [69]
and the work of Takano et al. [244] for an application to problems similar to those en-
countered in this thesis. Ghosh and coworkers [77] used heuristic microstructural-based
error indicator for automated adaptive modeling. Finally, a rigorous framework of goal-
oriented modeling employing a posteriori error estimation has recently been introduced by
Oden and coworkers [183, 185] and applied to the hierarchical analysis of heterogeneous
materials [184, 266].

The uncoupled multiscale approach, on the other hand, implicitly relies on the peri-
odicity of the microstructure and the multiple scale expansion method (see fundamental
works of Babuška [8], Bensoussan et al. [16] and Sanchez-Palencia [222, 223] for more
detailed discussion). Loosely speaking, this method is based on expansion of the searched
solution in powers of ε, a small parameter related to a ratio of different length scales, which
is plugged into the governing equations of the problem. The terms corresponding to a
different powers of ε yield a hierarchy of equations to be solved on each scale. The solution
procedure starts from the lowest scale, then proceeds to higher scales, where the averaged
quantities from the lower scale are supplemented as the input to the upper one. This
allows rather natural physical interpretation of, for example, the averaged stress-strain
relationship as a general form of constitutive equations for heterogenous materials. More-
over, this formalism is especially well-suited for numerical implementation in the common
framework of the finite element method, and, as such, it is also employed in this work.
The uncoupled modeling approach was studied in diverse works, we briefly mention just a
few of them. Fish and coworkers in a formidable collection of papers applied this strategy
to various problems of computational solid mechanics, starting from small strain [70] and
finite deformation [68] plasticity, viscoplasticity [67], damage mechanics [72, 74], wave
propagation [66] and fatigue problems [73]. An excellent discussion on physical aspects of
uncoupled approach can be found, e.g., in the work of Kouznetsova et al. [124] with the
extension to gradient continuum theories considered in [125]; Sluis et al. [262] examined
the effect on microstructural modeling on overall response of nonlinear materials. A gen-
eral framework for uncoupled multiscale computational inelasticity was provided in recent
works of Terada et al. [252] and Miehe [163].

1.4 Microscale modeling

With respect to the topic of the present work and the discussion above, we focus our at-
tention on the three-scale uncoupled modeling approach, i.e., we assume that the analysis
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is now decomposed into three different problems on microscale, mesoscale and macroscale,
respectively and, in addition, the geometry on macroscale and microscale levels is peri-
odic. This section focuses on the aspects of the microscale modeling, while the mesoscale
strategies are postponed to Section 1.51.

In contrary to the discussion on the general multi-scale analysis, which was concerned
solely with numerical aspects of the modeling, the overall behavior on microstructural
level can be estimated either by analytical methods, based, e.g., on equivalent inclusion
method, series expansion or variational principles, or by numerical methods typically
relying on the microstructure periodicity. A variety of analytical methods for the micro-
structural modeling stems from the famous Eshelby’s finding [61] that the stress field in an
ellipsoidal inclusion in a medium subjected to a far-field stress is also uniform. This result
led to a variety of approximate techniques exploring the presence of uniform fields within
the composite improving the dilute approximation [58] such as the self-consistent method
of Budiansky [27] and Hill [96] and the Mori-Tanaka theory [172], respectively its refor-
mulation by Benveniste [17]. See, e.g., reviews by Laws [140] and Walpole [274] for more
detailed discussion. These ideas were later generalized to inelastic composite materials by
Dvorak and Benveniste in the framework of the Transformation Field Analysis [51, 52].

The second category of the effective medium theories is based on variational principles
for composite media, starting from the well-known result of Hill [93] who showed that
the Voight [267] and Reuss [210] estimates for polycrystals yield rigorous bounds on the
effective stiffness tensor. Hashin and Shtrikman in their famous article [89] proposed
new variational principles and applied them to obtain bounds on bulk and shear moduli
for binary isotropic composites with well-ordered phases. Subsequently, their discovery
was extended by numerous authors; Walpole [273] removed rather technical assumption
on well-ordered phases considered in the original work. Kröner [133] and Willis [285]
provided statistical interpretation of the Hashin-Shtrikman bounds and showed that they
actually explicitly incorporate information about the microstructure morphology (see also
overview articles [134, 286] for more detailed discussion on these topics). Willis [287]
extended these principles for modeling of wave propagation in heterogenous media, an
alternative interpretation of Hashin-Shtrikman variational principles in the framework
of translation method was provided by Milton [166] and Milton and Kohn [168]. The
extension of Hashin-Shtrikman variational principles to non-linear composites based on
introduction of a linear comparison medium was proposed by Ponte Castañeda [198] and
Talbot and Willis [246] (see the overview by Ponte Castañeda and Suquet [200] and the
most recent work of Ponte Castañeda [199] for more detailed discussion and an inventory
of applications). Nesi et al. [178] presented the comparison of non-linear variational
principles and the translation method. We conclude this brief list of applications of
Hashin-Shtrikman variational principles by mentioning the recent work on relaxation of
non-convex variational problems by Smyshlyaev and Willis [233, 234].

Kröner [133] and Willis [286], among others, derived the series expansion of the ef-
fective moduli and local fields. Moreover, Kröner showed that the truncated series can
be advantageously used as trial fields in classical variational principles to obtain bounds
incorporating higher-order correlation functions. These results were further extended by

1 Note that this terminology is rather formal as some methods described in this section can be applied
to mesoscale modeling with only minor changes. We adopted this nomenclature to follow the scheme
displayed in Fig. 1.1 and to distinguish the methods specialized to the analysis of woven composites.
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Torquato [256] who proposed an alternative series expansion incorporating n-point prob-
ability functions; see also Ph.D. thesis of Derr [45] for implementation of this theory for
real-world materials. Finally note that more details and exhaustive discussion on the top-
ics merely outlined here can be found in outstanding recent monographs by Milton [167]
and Torquato [257].

Apart from a variety of tools coming from analytical modeling many numerical tech-
niques have been explored for the solution of microscale problems. We begin with the
most common finite element method employed for the solution of the unit cell problem,
pioneered by Bourgat [22] and further extended, for example, by Guedes and Kichuki [84],
Holmbom et al. [100], Suquet [241] and Michel et al. [161]. An alternative homogenization
method based on Bloch decomposition method [38], originally devised for the study of
wave propagation in periodic materials, has been recently proposed by Conca and Nate-
san [37]. In addition, the boundary element techniques were used by Eischen and Torquato
[59] and Okada et al. [186], Ghosh et al. [78] employ the Voronroi cell method to efficiently
solve unit cells with multiple inclusions. Motivated by the analysis of problems with a
complicated microstructure, obtained typically from the image analysis of real materi-
als, the digital image-based method was introduced by Terada et al. [253] (see, e.g., the
work of Nagai et al. [176] for application of this method for analysis of three dimen-
sional concrete microstructures), while Moulinec and Suquet [173] and Michel et al. [162]
use the iterative method based on the fast Fourier Transform. Finally note the work of
Greengard and Helsing [83] where an efficient method for the analysis of planar isotropic
composites based on fast multipole method was used to compute the effective elastic
moduli of complex microstructures with ten digit accuracy.

1.5 Analysis of woven fabric composites

Similarly to the microstructural modeling, the overall properties of woven fabric com-
posites can be obtained either by numerical simulation methods or simplified engineering
analytic approaches. The complex three-dimensional structure of woven fabric compos-
ites results in rather extensive computational problems, therefore a variety of heuristic
homogenization procedures based on various simplifying assumptions has been proposed.
Moreover, to author’s best knowledge, all works dealing with the numerical analysis of
woven fabric composites rely on the finite element method approaches2, a situation totally
different from microstructural modeling, where a variety of different routes can be pursued.
Note that, due to their manufacturing process, the structure of woven composites can be,
at least theoretically, fully described by one periodic unit cell, which makes asymptotic
homogenization techniques rather attractive for the analysis of these materials.

The analytical methods for woven fabric composites start either from modified clas-
sical laminate theories (CLT) or basic energy principles. The CLT-based approach was
pioneered in the series of works by Ishikawa and Chou, who used the the one-dimensional
fiber undulation model [112], two-dimensional mosaic model [110] relying on piecewise
constant geometry and the bridging model [111] combining features of the two previ-
ous approaches to analyze elastic behavior of a variety of woven fabric composites. The

2 The fast Fourier transform based analysis was examined in the work of Wierer [283]. Unfortunately,
the complex structure of woven fabric composites causes serious convergence problems which has not
been satisfactory resolved yet.



Introduction and State of the Art 11

experimental validation of these methods can be found, e.g, in Ishikawa et al. [113].
Naik and Shembekar in [177] extended these results by considering a more refined version
of the woven composite geometry. See, e.g., the overviews by Cox and Flanagan [40],
Raju and Wang [207] and Tan et al. [248] for more detailed discussion on these methods.
Note that although modeling strategies based on classical laminate theory show a reason-
ably good correspondence with experiments for special types of loading, the numerical
study of Whitcomb and Tang [280] demonstrated that their success can be attributed to
error cancellation rather that to sound physical justification of simplifying assumptions.

The alternative approach to analytical modeling of woven composites is based on
the classical energy principles; starting either from the simplest assumption on constant
strain or stresses within a fabric composite resulting in stiffness/compliance averaging
techniques, see, e.g., works of Kregers and Malbardis [130], Pastore and Gowayed [192],
Weissenbach et al. [275] and Sheng and Hoa [228], or considering more refined version
based on decomposition of the woven composite basic unit cell into several sub-cells and
subsequent minimization of given energy functional assuming piecewise constant varia-
tion of fields within sub-cells (note that conceptually similar method was introduced by
Aboudi [3] for general composite materials), see, e.g. the works of Pastore et al. [191],
Vandeurzen et al. [263, 264] and Tabiei and Yi [243] for implementation of this method-
ology. The mixed variational principles were explored by Roy and Sihn to obtain reliable
stress distribution in woven composites [215]. Kuhn et al. [136] employed the Ritz method
to get a trigonometric series expansion of the displacement field for the in-plane loading
conditions for a particular geometrical model of woven composite; this technique was
further extented by Marvalová [154] by introducing the “brick method”, which is free of
any geometry assumptions. The Mori-Tanaka method has also been employed for the
determination of overall elastic properties of composite materials by Gommers et al. [82].

In the last decade, the finite element-based methods has been employed for the analysis
of woven fabric composites. It originated from the pioneering works of Zhang and Hard-
ing [300] for a simplified two-dimensional model and by Paumelle at al. [194, 195]
for a fully three-dimensional behavior. These studies were further followed by Das-
gupta and Bhandarkar [44, 43], Chapman and Whitcomb [34] and Whitcomb and Srire-
gan [279]. The automated CAD-based finite element procedures for the modeling of woven
composites are discussed in the work by Wentorf et al. [277], Takano et al. [244] employed
the mesh overlay technique to study composite structures with small geometrical details;
the effect of woven architecture on overall permeability was recently addressed in [245] by
the same authors. To reduce the computational work associated with modeling of woven
fabric composites, the local-global finite element method based on static condensation
was proposed by Whitcomb et al. [282, 281]. This technique was further employed by
Woo and Whitcomb for studies on failure behavior [288], reinforcement imperfection [288]
and reliable recovery of local stress distribution [290]. Recently, efficient mesh generation
procedures, tailored to the needs of adaptive analysis of woven composites, were proposed
by Kim and Swan [118, 119]. In last few years, a number of comparative studies emerged
in the literature, an excellent discussion and overview of various topic associated with engi-
neering analysis of textile composites can be found in the report of Cox and Flanagan [40]
and an extensive numerical comparison of various methods is presented in the works of
Byström et al. [30], Chung and Tamma [36], Tabei and Yi [243] and Whitcomb et al. [278].

Although all the above analyses are based on the idealized geometry of woven fabric
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composites, it is well-understood that the overall behavior is to a great extent influenced by
imperfections appearing during the fabrication process. On the experimental level, these
effects were qualitatively investigated in several works, see, e.g., Breiling and Adams [25],
Košek and Košková [128], Roy [214] and Yurgartis et al. [294]; the systematic classification
and discussion of sources of individual types of imperfection was proposed by Pastore [190].
The theoretical studies of this phenomenon were addressed in the framework of laminate
theories by Shembekar and Naik [227] who incorporated a possible shift of individual
layers in their model and in the excellent work of Yushanov and Bogdanovich [295, 296],
who considered a general random imperfections to the tow path and used the stiffness
averaging method to obtain statistics on the overall elastic moduli. For numerical studies
of this phenomenon see the works of Woo and Whitcomb [289] for the three-dimensional
geometry of the woven fabric composite and Byström et al. [30, 115] for a simplified
two-dimensional model.

1.6 Present work

The topics addressed in the present work are confined to the problem of unit cell def-
inition on the meso and microscale levels based on microstructural statistics and to an
efficient alternative method incorporating the appropriate statistical descriptors on the
microscale level. Various novel approaches and ideas discussed so far are introduced here
in very details and applied to composite materials with elastic, thermoelastic and linear
and non-linear viscoelastic phases. An attention is paid to unified representation of all
these constitutive models in the framework of eigenstress and eigenstrain fields and in-
corporation of both the overall stress and strain driven response, which allows to present
a rather extensive comparison and discussion of similarities and differences between indi-
vidual modeling strategies.

The work is organized as follows. Chapter 2 reviews basic statistical descriptors for the
two-phase random medium. First, the concept of an ensemble is briefly discussed and the
principle of ensemble averaging is outlined. Then, microstructural descriptors suitable for
the characterization of the two-phase two-dimensional media are introduced together with
methods for their evaluation with emphasis put on reflecting possible anisotropy of the
media. Example results illustrate their applicability for the selected types of theoretical
as well as real-world microstructures. The chapter ends with description of the stochastic
optimization algorithm used for the solution of various minimization problems encountered
in the following chapters.

Chapter 3 deals with the micromechanical analysis of periodic microstructures by
means of the finite element method. It takes the reader through a complex optimization
process, which provides a unit cell with the sub-optimal material statistics as the real
composite. The resulting periodic unit cell is then subjected to a set of thermomechanical
loading conditions leading to uniform overall stress and strain fields. Applications to
material systems prone to viscoelastic deformation are visited in conjunction with the
generalized viscoelastic models of the Maxwell type.

Micromechanical analysis of random composites combined with the Hashin-Shtrikman
variational principles is the subject of Chapter 4. Both the primary and dual principles,
extended to account for the presence of initial strains, are revisited in a systematic way.
The main objective are macroscopic constitutive equations incorporating the random
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nature of the microstructure. The Fourier transform based approach is suggested to derive
various microstructure dependent tensors or matrices entering the overall constitutive law.

The extension of principles employed in Chapter 3 to the modeling of woven fabric
composites is presented in Chapter 5 to incorporate the longitudinal shift of individual
tows into the model of the periodic unit cell proposed by Kuhn and Charalambides [135].
In particular, the parameters of the idealized periodic unit cell are found by matching ap-
propriate statistical descriptors related to the target microstructure and two-dimensional
cross-section of the geometry model. Geometrical parameters derived from the optimiza-
tion procedure are then used to generate an equivalent periodic unit cell, which is then
combined with the finite element method analysis to provide the desired effective ma-
terial properties of a composite. The chapter ends with an example of application of
Hashin-Shtrikman based homogenization to study the prestress effects on failure behavior
of braided weave composite systems.

Theoretical background and technicalities related to previous chapters are exposed
in associated appendices. Appendix A lists the constitutive models used in this work,
technical details related to the Hashin-Shtrikman variational principles are gathered in
Appendix B. Finally, a mathematically rigorous analysis of the uncoupled modeling is
presented in Appendix C to justify the intuitive engineering approaches used in this text.



Chapter 2

QUANTIFICATION OF MICROSTRUCTURE
MORPHOLOGY

Traditional micromechanical analysis of composite media with disordered microstruc-
ture is typically based on very limited microstructural information such as volume frac-
tion of individual phases1. However, when a certain additional knowledge of the real
microstructure is available, the estimates of local fields can be improved by treating ran-
dom composites (see, e.g., [131, 133, 134, 255, 257, 285, 286] and references herein). Such
a modeling framework is considered throughout this text.

This opening chapter outlines evaluation of various statistical descriptors, which arise
in the analysis of binary microstructures with random arrangement of individual phases.
With regard to specific applications discussed in the following chapters (analysis of the
graphite fiber tow embedded in the polymer matrix and two-dimensional sections of plain
weave composites), the background introduced in this chapter is quite general and can be
applied to any two-phase random heterogeneous medium of arbitrary phase geometry2.
The chapter ends with the description of stochastic optimization algorithm used for solving
various minimization problems encountered in Chapters 3 and 5.

Section 2.1 reviews basic concepts and hypotheses associated with quantification of
microstructure morphology. Individual statistical descriptors used in the present work are
introduced in Sections 2.2. The methods of their numerical evaluation are presented in
Section 2.3 together with numerical examples for a theoretical model of microstructure.
Then, extension to real-world composite systems is provided in Section 2.4. Finally, a
stochastic optimization algorithm is discussed in Section 2.5.

2.1 Basic concepts and hypotheses

Motivation. To introduce the subject, imagine a collection of a large number of mi-
crographs describing the geometry of a two phase fibrous composite. An example of such
a micrograph is displayed in Fig. 2.1. Fig. 2.1a represents a portion of a graphite–fiber
tow containing approximately twelve thousand fibers. A random cut consisting of about
three hundred fibers is shown in Fig. 2.1b. Although having a large number of fibers, one
can hardly assume that such a representative can completely describe the morphology of
the whole composite. Simply taking similar micrographs from other parts of the fiber tow
indicates visual difference in the microstructure from sample to sample. At this point, we

1 Namely, stiffness and compliance averaging method [94, 210, 267], dilute approximation [58], self-
consistent method [27, 96], differential scheme [182] and Mori-Tanaka method [17, 172] fall into this
category.

2 In the case of particulate composites, a variety of specialized microstructural descriptors can be used
for microstructure characterization, see, e.g, [205, 212, 238, 255, 257, 271] and improved estimates
of local fields [153, 201, 255]. Moreover, we refer a more theoretically oriented reader to [238] for
mathematically rigorous discussion related to subjects of this chapter.
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(a) (b)

Figure 2.1: A real micrograph of a transverse plane section of the fiber tow

should perhaps ask ourself whether there is a reliable approach in modeling of composite
materials, which permits in some way incorporating elements of real microstructure into
the analysis. The answer is affirmative once we recognize the random nature of geometrical
arrangements of phases and treat random composites – it means that the particular mi-
crostructure of a given part of a fiber tow yields only one possible arrangement of phases.
Therefore, instead of determining the exact value of some quantity at a given point (which
is sample dependent), attention is given to its expected or averaged or macroscopic value,
which incorporates information from all samples taken from a material.

2.1.1 Concept of an ensemble

To reflect a random character of a heterogeneous medium it is convenient to introduce the
concept of an ensemble – a set of a large number of systems which are different in their
microscopical details but they are entirely identical within a point of view of macroscopic
scale (see, e.g., [18, 88, 131, 133, 137, 286]). Random nature of such material systems
further suggests that individual members of the ensemble, to be statistically representative
of the composite, should be sufficiently large compared to the microstructural length scale
(e.g., fiber diameter).

To begin, consider a sample space S defined here as a collection of material samples
similar to one of Fig. 2.1b. Formation of S then opens a way to provide an estimate for
effective or expected value of some quantity, say stress or strain field, through the process
of its averaging over all systems in the ensemble. To proceed, identify individual members
of this space by α and define p(α) as the probability density of α in S (see [122, 131, 134,
286] for further reference). Then, the ensemble average of function F (x, α) at a point x
is provided by

F (x, α) =

∫
S
F (x, α)p(α) dα. (2.1)

Following the above definition would require experimental determination of the ensemble
average of function F (x, α) for a given point x through the cumbersome procedure of
manufacturing a large number of samples (which form the ensemble space S), measuring
F (x, α) for every sample and then its averaging for all samples. Therefore, it appears
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meaningful to introduce certain hypotheses regarding the ensemble average, which sub-
stantially simplify this task.

2.1.2 Ergodic hypothesis

This hypothesis demands all states available to an ensemble of the systems to be available
to every member of the system in the ensemble as well [18, 131, 137, 221, 238]. Once this
hypothesis is adopted, spatial or volume average of function F (x, α) given by

〈F (x, α)〉 =
1

|V |

∫
V

F (x + y, α) dy, (2.2)

is independent of α and identical to the ensemble average for |V | → ∞, i.e.,

〈F (x, α)〉 = F (x, α), (2.3)

for all α ∈ S. This hypothesis allows an examination of only one arbitrary member of the
sample space, provided that the sample is “sufficiently large”. A possible way to fulfill
this condition is to assume a periodic composite described by a unit cell Y . Then [221],

lim
|V |→∞

1

|V |

∫
V

F (x + y, α) dy =
1

|Y |

∫
Y

F (x + y, α) dy, (2.4)

so for the ergodic periodic composite medium, the ensemble average of F (x, α) is equal
to the volume average taken over the unit cell.

2.1.3 Statistical homogeneity

Suppose that function F depends on n vectors x1, . . . ,xn. If the material is statistically
homogeneous the ensemble average of F is invariant with respect to translation [18, 238,
258], so the relation

F (x1, . . . ,xn) = F (x1 − y, . . . ,xn − y), (2.5)

holds for an arbitrary value of y. The most common choice is to set y = x1, so

F (x1, . . . ,xn) = F (0,x2 − x1, . . . ,xn − x1) = F (x12, . . . ,x1n), (2.6)

where xij = xj − xi.

2.1.4 Statistical isotropy

Further simplification arises when assuming the material to be statistically isotropic [18,
238, 258]. In such a case, the ensemble average is not only independent of the position
of the coordinate system origin but also of the coordinate system rotation. Under this
hypothesis, the ensemble average depends on the absolute value of vectors x12, . . . ,x1n

only:
F (x12, . . . ,x1n) = F (rij), (2.7)

where rij = ‖xij‖, i = 1, . . . , n, j = (i+ 1), . . . , n.
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2.2 Microstructure description

A number of statistical descriptors is available to characterize the microstructure of a two-
phase random medium. This section describes two specific sets of descriptors which proved
to be useful in the present work. First, a set of general n-point probability functions,
applicable to an arbitrary two-phase composite, is introduced. A different statistical
function deserves attention when phase connectivity information are to be captured in
more detail. The lineal path function is discussed as an example of such a descriptor.

Both types of functions are introduced through a fundamental random function rel-
evant to the microstructure configuration. Then, statistical moments of this function
are identified as descriptors of the microstructure morphology. Finally, similarities and
differences between individual types of statistical descriptors are discussed.

2.2.1 n-point probability functions

Fundamental function and statistical moments. Consider an ensemble of a two-
phase random medium. To provide a general statistical description of such a system
it proves useful to characterize each member of the ensemble by a stochastic function–
characteristic function χr(x, α), which is equal to one when point x lies in the phase r in
the sample α and equal to zero otherwise [18, 258, 238],

χr(x, α) =

{
1, if x ∈ Dr(α),
0, otherwise,

(2.8)

where Dr(α) denotes the domain occupied by the r-th phase. Except where noted,
composites consisting of clearly distinguishable continuous matrix phase are considered.
Therefore, r = m, f is further assumed to take values m for the matrix phase while symbol
f is reserved for the second phase. For such a system the characteristic functions χf (x, α)
and χm(x, α) are related by

χm(x, α) + χf (x, α) = 1. (2.9)

Following [18, 238, 258, 286], we write the ensemble average of the product of characteristic
functions

Sr1,...,rn(x1, . . . ,xn) = χr1(x1, α) · · ·χrn(xn, α), (2.10)

where function Sr1,...,rn referred to as the general n-point probability gives the probability
of finding n points x1, . . . ,xn randomly thrown into a medium located in the phases
r1, . . . , rn.

Functions of the first and second order. Hereafter, we limit our attention to func-
tions of the order of one and two, since higher-order functions are quite difficult to de-
termine in practice3. Therefore, description of a random medium will be provided by the
one-point probability function Sr(x)

Sr(x) = χr(x, α), (2.11)

3 Note, however, that relatively efficient procedures for approximation of higher-order probability func-
tions for ergodic and statistically isotropic media were recently proposed in [45] and [46].



Quantification of microstructure morphology 18

which simply gives the probability of finding the phase r at x and by the two-point
probability function Srs(x1,x2)

Srs(x1,x2) = χr(x1, α)χs(x2, α), (2.12)

which denotes the probability of finding simultaneously the phase r at x1 and the phase s
at x2. In general, evaluation of these characteristics may prove to be prohibitively difficult.
Fortunately, a simple method of attack can be adopted when accepting an assumption
regarding the material as statistically homogeneous, so that (compare with Eq. (2.5))

Sr(x) = Sr, (2.13)

Srs(x1,x2) = Srs(x1 − x2). (2.14)

Further simplification arises when assuming the medium to be statistically isotropic. Then
Srs(x− x2) reduces to (see also Eq. (2.7))

Srs(x1 − x2) = Srs(‖x1 − x2‖). (2.15)

Finally, making an ergodic assumption allows a substitution of the one-point correlation
function by its volume average, i.e., volume concentration or volume fraction of the r-th
phase cr,

Sr = cr. (2.16)

Limiting values. In addition, the two-point probability function Srs depends on the
one-point probability function Sr for certain values of its arguments such that

for x1 = x2 : Srs(x1,x2) = δrsSr(x1), (2.17)

for ‖x1 − x2‖ → ∞ : lim
‖x1−x2‖→∞

Srs(x1,x2) = Sr(x1)Ss(x2), (2.18)

where symbol δrs stands for Kronecker’s delta. Relation (2.17) states that the probability
of finding two different phases at a single point is equal to 0 (see also Eq. (2.9)) or is given
by the one-point probability function if phases are identical. Equation (2.18) manifests
that for large distances points x1 and x2 are statistically independent. This relation is
often denoted as the no-long range orders hypothesis (see e.g. [153, 285]).

Finally, according to Eq. (2.9), we may determine one and two-point probability func-
tions for all phases provided that these functions are given for one arbitrary phase. For
one-point probability function of statistically homogeneous and ergodic medium, this re-
lation assumes a trivial form

cm = 1− cf . (2.19)

Relations for the two-point probability functions of statistically uniform and ergodic
medium are summarized in Table 2.14.

4 Note that, by definition (2.12) and assumption of statistical homogeneity, Srs(x) = Ssr(x).
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Known function
Smm(x) Smf (x) Sff (x)

Smm(x) Smm(x) cm − Smf (x) cm − cf + Sff (x)
Smf (x) cm − Smm(x) Smf (x) cf − Sff (x)
Sff (x) cf − cm + Smm(x) cf − Smf (x) Sff (x)

Table 2.1: Relations between two-point probability functions

2.2.2 Lineal path function

As already noted in the previous section, the determination of probability functions of
order higher than two encounters serious difficulties, both analytical and numerical5.
However, the importance of these functions for the characterization of morphology and
overall properties of heterogeneous materials is substantial (see, e.g., [45, 165, 169, 255] and
references therein). To overcome this difficulty, one can study low-order microstructural
descriptors based on a more complex fundamental function which contains more detailed
information about phase connectedness and hence certain information about long-range
orders. The lineal path function [147], described in this section, is a representative of such
indicators.

Fundamental function and statistical moments. To maintain a formal similarity
with the discussion of the n-point probability functions, we introduce a random function
λr(x1,x2, α) as

λr(x1,x2, α) =

{
1, if x1x2 ⊂ Dr(α),
0, otherwise,

(2.20)

i.e., a function which equals to 1 when the segment x1x2 is contained in the phase r for
the sample α and zero otherwise. The lineal path function6, denoting the probability that
the x1x2 segment lies in the phase r, then follows directly from the ensemble averaging
of this function [147]

Lr(x1,x2) = λr(x1,x2, α). (2.21)

Under the assumptions of statistical homogeneity and isotropy, the function simplifies
equivalently to relations (2.5) and (2.7)

Lr(x1,x2) = Lr(x1 − x2), (2.22)

Lr(x1 − x2) = Lr(‖x1 − x2‖). (2.23)

Limiting values. Obviously, if the points x1 and x2 coincide, the lineal path function
is nothing else but the one-point probability function; for points x1 and x2 that are far

5 See, e.g., [19, 39, 45] for discussion of procedures for determination of third-order probability functions
for statistically isotropic ergodic media.
6 The lineal path function can be related to the lineal contact distribution function H`

r(u) introduced
in [238]. Indeed, the lineal contact distribution function for a line ` starting at the origin and the r-th
phase is defined by relation H`

r(u) = 1 − P ({Dr ∩ u`} = ∅)/(1 − cr). Then, e.g., for r = m, we get
H`

f (u) = 1− Lm(u`)/(1− cf ) and finally Lm(u`) = cm(1−H`
f ). See also [152, 247].
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apart the lineal path function vanishes,

for x1 = x2 : Lr(x1,x2) = Sr(x1), (2.24)

for ‖x1 − x2‖ → ∞ : lim
‖x1−x2‖→∞

Lr(x1,x2) = 0. (2.25)

The substantial difference between the lineal path function and n-point probability
function is that the functions related to different phases cannot be, in general, uniquely
determined by relations similar to Table 2.1. This is just another confirmation of the fact
that this function contains additional information which needn’t be captured by low-order
probability functions7.

2.3 Numerical evaluation of microstructural statistics

Numerical evaluation of microstructural statistics introduced in the previous sections
proceeds as follows. We begin with the n-point probability functions assuming an ergodic
medium. An approach suitable for digitized media is explored. Then, a procedure for the
determination of lineal path function is proposed. Both descriptors are evaluated for a
selected representative of theoretical microstructural models8.

2.3.1 n-point probability functions

To determine Sr1,...,rn we recall that the general n-point probability gives the probability
of finding n points x1, . . . ,xn randomly thrown into a medium located in the phases
r1, . . . , rn. Among all functions, the one–point and two–point probability functions deserve
a special attention as they arise in the formulation of macroscopic constitutive equations
of random composites discussed in Chapter 4. In view of Table 2.1 we further consider
only the matrix probability functions.

To follow the above definition, the one–point matrix probability function Sm gives the
chance of finding a randomly placed point located in the matrix phase. To determine
this quantity, a simple Monte-Carlo like simulation can be utilized – we throw randomly
point into the microstructure and count successful “hits“ into the matrix phase. Then,
the value of function Sm can be estimated as

Sm ≈ n′

n
, (2.26)

where n′ is the number of successful hits and n denotes the total number of throws.
Entirely similar procedure can be employed to determine values of Smm(x)9.

7 For various deterministic periodic microstructures with smooth boundaries between phases, however,
the extensive numerical studies reported in [217] led the authors to the conjecture that the two-
point probability functions are sufficient to uniquely reconstruct the given microstructure (up to the
translation and possible inversion of the image).

8 An interested reader may consult the overview article [255] or the books [238, 257] for exhaustive and
systematic discussion of various microstructural models.

9 For statistically isotropic microstructure, Smith and Torquato [232] proposed more efficient procedure
for the determination of Smm(‖x12‖). Instead of tossing a line corresponding to x into a medium, a
sampling template is used for the determination of two-point probability function. See also [271] for
comparison of this method with approaches presented hereafter.
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Figure 2.2: Idealized binary image of Fig. 2.1b. Bitmap resolution is 976 × 716 pixels

Another, more attractive, approach is available when the real microstructure is re-
placed by its binary image. A binary version of Fig. 2.1b is shown in Fig. 2.2. Such a
digitized micrograph can be imagined as a discretization of the characteristic function
χr(x, α), usually presented in terms of a W × H bitmap. Denoting the value of χr for
the pixel located in the i-th row and j-th column as χr(i, j) allows writing the first two
moments of function Sn for an ergodic and statistically homogeneous as medium in the
form10

Sr =
1

WH

W−1∑
i=0

H−1∑
j=0

χr(i, j), (2.27)

Srs(m,n) =
1

(iM − im)(jN − jn)

iM−1∑
i=im

jN−1∑
j=jn

χr(i, j)χs(i+m, j + n), (2.28)

where im = max(0,−m), iM = min(W,W−m) and jn = max(0,−n), jN = min(H,H−n).
Observe that to compute function Sr requires O(WH) operations, while O((WH)2) op-
erations are needed for function Srs. This might be computationally demanding, particu-
larly for a large micrograph, and does not seem to bring any advantages over simulation
techniques.

The required number of operations, however, can be reduced when writing the two–
point probability function Srs for a periodic ergodic medium as a correlation of functions
χr and χs, recall Eq. (2.4),

Srs(x) =
1

|Y |

∫
Y

χr(y)χs(x + y) dy. (2.29)

Then, using relation (B.3), the Fourier transform of Srs is provided by

S̃rs(ξ) =
1

|Y |
χ̃r(ξ)χ̃s(ξ), (2.30)

10 Throughout the text, the C-language type of array indexing is consistently used, i.e., we denote the
first element of an array a as a0 and the last element of the array as aL−1, where L is the array length.
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where · now stands for the complex conjugate. Taking advantage of the periodicity of
function χr one may implement the Discrete Fourier Transform (DFT) [28] when eval-
uating Eq. (2.30). To shed a light on this subject we first write the discrete version of
Eq. (2.29) in the form

Srs(m,n) =
1

WH

W−1∑
i=0

H−1∑
j=0

χr(i, j)χs((i+m)%W, (j + n)%H), (2.31)

where symbol “%” stands for modulo. The above equation, usually termed the cyclic
correlation [28], readily implies periodicity of function Srs. Note that the correlation
property of DFT holds for cyclic correlation. Referring to Eq. (2.30) it is given by the
following relation

DFT{Srs(m,n)} = DFT{χr(m,n)}DFT{χs(m,n)}. (2.32)

The inverse DFT denoted as IDFT then serves to derive function Srs at the final set of
discrete points as [19]

Srs(m,n) =
1

WH
IDFT{DFT{χr(m,n)}DFT{χs(m,n)}}. (2.33)

This method is very economical and its accuracy depends only on the selected resolution
of the digitized medium. See also Appendix B for further discussion. Usually, the Fast
Fourier Transform, which needs only O(WH log(WH) + WH) operations, is called to
carry out the numerical computation11.

2.3.2 Lineal path function

Following the definition of the lineal path function as a probability of finding a segment
randomly thrown into a medium contained in a given phase, Eq. (2.21), an elementary
Monte Carlo-based procedure can be again used for its evaluation, i.e., we randomly throw
segments into a medium and count the cases when the segment meets the given condition.
Computationally more intensive approach, however, can be employed following the idea
of sampling template introduced in [232].

To that end, we form a sampling template with dimensions TW × TH pixels. Then,
we draw a set of segments from the center of a template to the points on the template
boundary separated by given discrete steps ∆W and ∆H (see Figure 2.3). If the DDA
algorithm (see, e.g., [105]) is used for a construction of segments, the template can be
rapidly assembled using only integer operations. Moreover, this algorithm can be effec-
tively combined with the bitmap representation of the microstructure. Once a template is
formed, the values of the lineal path function for a given direction starts with placing the
template center at a given point found, say, in phase r and then marking the pixel at which
the segment corresponding to the selected direction meets the other phase, say s12. Then,
counters corresponding to pixels of a given segment which are closer to the center than the
marked pixel are increased by one while remaining counters are left unchanged. The value

11 The public-domain package FFTW version 2.1.3 [60] was used for the evaluation of (2.33).
12 In particular, the matrix phase is checked when Lf function is determined while the fiber phase
represents the “stop condition” for the Lm function.
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Figure 2.3: An example of sampling template

of the lineal path function then can be obtained either by stochastic sampling (randomly
throwing template center in a medium) or deterministic sampling (template center is suc-
cessively placed in all pixels of a bitmap) and averaging the obtained results. Moreover,
the latter method allows us to actually use only a half of the sampling template, provided
that the analyzed microstructure is statistically homogeneous. Note that even though this
procedure basically needs only integer-based operations, it is still substantially slower than
the FFT-based approach. Hence, a relatively sparse sampling template is unavoidable if
one wishes to keep the efficiency of this procedure comparable to the determination of the
two-point probability function (see Section 2.3.4 for a concrete example).

2.3.3 Microstructural statistics for fully overlapping discs

The purpose of this section is to test the proposed evaluation techniques for an example of
statistically isotropic models of microstructure – the model of equal-sized fully penetrable
discs. Selection of this (rather simple) microstructural model is rather intentional as the
closed form of the functions Smm(r) and Lm(r) are readily available in the literature, see
e.g., [147, 238, 255].

Two-point probability function. Recall that Smm(x1,x2) represents the probability
of finding two points x1 and x2 randomly thrown into the medium both in the matrix. For
fully penetrable discs this function corresponds to the probability that union of two discs
with radius R and centers located in points x1 and x2 is not occupied by any other particle
center. Denoting ρ as a number of discs per unit area, such an event can be described by
the Poisson probability distribution (see, e.g., [238]) with the intensity ρΩu(x1,x2),

Smm(x1,x2) = exp(−ρΩu(x1,x2)), (2.34)

where Ωu(x1,x2) is area of the union of two identical discs with radius R and centers
located at points x1 and x2 (see Fig. 2.4a). By the statistical isotropy of the present
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Figure 2.4: Fully penetrable discs model: (a) set Ωu(r), (b) set ΩE(r)

model, this function depends only on the distance of these two points r = ‖x1−x2‖, i.e.,

Ωu(r) =

{
2R2

[
π − arccos(r/2R) + r/2R

√
1− (r/2R)2

]
, r < 2R,

2πR2, r ≥ 2R.
(2.35)

Thus, the two-point matrix probability function is isotropic and provided by expres-
sion [238, 255]

Smm(r) = exp(−ρΩu(r)). (2.36)

Lineal path function. Similar reasoning can be used to obtain the matrix lineal path
function for the current model. The function represents the probability that a set of points
with the distance from the segment x1x2 smaller than R is not occupied by any particle
center. Denoting the area of this set as ΩE(r) we arrive at the expression [147, 206]

Lm(r) = exp(−ρΩE(r)), (2.37)

where ΩE(r) is provided by (see also Fig. 2.4b)

ΩE(r) = πR2 + 2Rr. (2.38)

Finally, to arrive at the number of particles ρ per unit area (volume) we combine
Eqs. (2.17) and (2.36) (or, equivalently, Eqs. (2.24) and (2.37)) to write the matrix volume
fraction in the form

Smm(r = 0) = Lm(r = 0) = cm = exp(−ρ πR2). (2.39)

Therefore, for a given matrix volume fraction cm, the above relation readily provides the
corresponding value of ρ.
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2.3.4 Numerical experiments

Numerical experiments were performed for 50 different configurations containing 100 cir-
cular particles having common radius R = 16 pixels. Each configuration was generated
purely randomly keeping the matrix volume fraction cm fixed. The value of Smm was
found by the Fast Fourier Transform (2.33), while the sampling template with parame-
ters TW = TH = 161 pixels and discrete steps ∆W = ∆H = 20 pixels was used for the
determination of values of Lm function13. The solid dots appearing in Fig. 2.5 were ob-
tained by averaging the resulting values from all fifty configurations and by isotropising
the data for selected distances14, while the horizontal lines indicate the scatter of the
averaged data. The individual curves in Fig. 2.5 are the theoretical values obtained by
relations (2.36) and (2.37). It is evident that a very satisfactory match between theoret-
ical and simulation results was obtained and that the sampling procedures introduce no
artificial anisotropy in computed statistics. Also note that the function Lm contains sub-
stantial long-range information for higher values of cm compared to the two-point matrix
probability function Smm.
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Figure 2.5: Fully penetrable discs model: (a) Two-point matrix probability function, (b)
Matrix lineal path function

Table 2.2 stores the computational time needed for individual tests15. Clearly, the
FFT-based approach outperforms the sampling template method by an order of magni-
tude from the point of view of computational efficiency, mainly due to the remarkable
performance of FFTW library [60]. Therefore, to keep the computational time reason-
able, one should inevitable turn to rather sparse sampling templates and relatively low

13 The results for the direct approach, see Eq. (2.28), are not presented here as the computation is very
time-consuming and delivers similar results as the FFT-based approach. An interested reader may,
however, consult the work [271] for numerical comparison of these two approaches.

14 Following [19], we compute statistics of the isotropized Srs(x) function for the length of a vector x
equal to r by sampling values at positions (r cos φ, r sinφ) with regular angular step ∆φ = π/(4r).
Values for non-integer positions are obtained by bilinear interpolation of the data given on a regular
grid.

15 The tests were run on a computer with Intel Celeron 700 MHz processor and 256MB RAM under
the Linux operating system. The C++ code was compiled by gcc 2.96 GNU complier with -03
optimization switch.
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resolutions of analyzed bitmaps. Fortunately, these conditions are met in applications
presented in Chapters 3 and 5, so the performance of the implemented algorithms is
satisfactory.

Volume fraction 0.2 0.4 0.6 0.8
Smm 4.98 8.97 16.0 21.52
Lm 20.24 127.97 528.58 2453.27

W ×H 228× 228 304× 304 408× 408 616× 616

Table 2.2: Fully penetrable discs model: Overall CPU times in seconds for 50 configura-
tions in seconds

2.4 Analysis of unidirectional fiber composite

In this section, the preceding procedures are applied to the real microstructure represented
here by the micrograph of Fig. 2.1b taken from the bundle of graphite fibers bonded to
the polymer matrix. For numerical analysis, the real microstructure is replaced by its
idealized binary image, Fig. 2.2, which offers rather concise yet more useful notion about
the actual arrangement of fibers within a sample16.

At present, the periodicity of microstructure is invoked so the micrograph is assumed to
be surrounded by periodic replicas of itself, which directly implies statistical homogeneity
of the medium. Moreover, the validity of the ergodic assumption is checked to some extent,
see Section 2.4.1. A number of results derived for the selected statistical descriptors are
referenced in Section 2.4.2–2.4.3.

2.4.1 Testing ergodic hypothesis

To test the ergodic hypothesis it is necessary to form the ensemble space S. When
sampling individual members of S we started from three micrographs of the fiber tow
taken from three specimens at approximately the same location. Each member of the
ensemble was then found through a random cut of a part of a given micrograph subjected
to condition of the “same” fiber volume fraction. This condition actually supplements the
lack of infinity of our composite medium. Fig. 2.6 shows six such individuals generated
from the micrograph displayed in Fig. 2.2. In view of the above comments we shall only
require that

cr =
1

N

N−1∑
i=0

Si
r, r = f,m, (2.40)

where N is the number of members in the ensemble. Functions Si
r can be derived by

randomly placing a point in the member i in a certain number of times while counting

16 The LUCIE software was used for the enhancement and binary conversion of original image and
to provide for the basic geometrical information such as the fiber radius, position of all particles in
the sample and the fiber volume fraction. The detailed description of this procedure can be found in
work [76]. General discussion of necessary steps and operations can be found, e.g., in [10, 19, 20, 29,
253, 277] and references therein.
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(c) (f)

Figure 2.6: Selected members of the sample space
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the number of hits in the phase r and then dividing by the total number of throws. When
setting the number of throws equal to 500 we found Sf = 0.42, which agrees well with
the average fiber volume fraction cf = 0.435. A better agreement can be expected for
larger N . Although an ultimate justification of an ergodic assumption would require to
prove equality of higher moments as well, we argue that the presented results are sufficient
for the medium to be considered as ergodic, providing the medium is indeed statistically
homogeneous. In the sense of an ergodic assumption we suggest that a single micrograph
can be used hereafter for evaluation of the required statistical descriptors.

(a) (b)

Figure 2.7: Idealized binary images of Fig. 2.1b; (a) resolution 488 × 358 pixels, (b)
resolution 244× 179 pixels

2.4.2 Two-point probability function

The two-point probability function was determined by the FFT-based approach for several
different bitmap resolutions to test the sensitivity of resulting microstructural descriptors
with respect to the size of the bitmap. In particular, three different resolutions of the
idealized binary images were explored: 976× 716 pixels (radius of a fiber R = 16 pixels,
Fig. 2.2), 488 × 358 (R = 8 pixels, Fig. 2.7a) and 244 × 179 (R = 4 pixels, Fig. 2.7b).
Resulting isotropized values together with coefficient of variation appear in Fig. 2.8. Note
that the r coordinate was scaled for lower resolutions to keep results comparable.

It is evident that the obtained values are nearly independent of the bitmap resolution
so we can safely use the bitmap with dimensions 488× 358 in further analyses. Further,
it can be observed that the matrix two-point probability function is nearly isotropic;
the maximal coefficient of variation ≈ 5%, Fig. 2.8b, can be accepted as a reasonable
violation of the assumption. Finally, for the sake of clarity, three-dimensional picture of
the two-point probability function is drawn in Fig. 2.917.

17 All three-dimensional pictures appearing in this thesis were created with the public-domain application
OpendDX 4.1.3 [2] by IBM corporation and postprocessing visual program obtained by the courtesy
of Mr. Martin Wierer.
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Figure 2.8: Isotropized two-point probability function and variation coefficient for unidi-
rectional fiber composite

Figure 2.9: Two-point matrix probability function of unidirectional fiber composite.
Bitmap resolution is 488× 358 pixels.

2.4.3 Lineal path function

A similar set of tests was performed for the matrix lineal path function. The sampling
template with TW = TH = 257 pixels and steps ∆W = ∆H = 4 pixels was formed and
deterministic sampling procedure was executed to obtain the values of matrix lineal path
function from the bitmap displayed in Fig. 2.2. The procedure was repeated for bitmaps
in Figs. 2.7a and 2.7b with suitably rescaled sampling template. The resulting isotropized
lineal-path functions and coefficients of variations are shown in Fig. 2.10. The presented
results again indicate the insensitivity of computed statistics with respect to bitmap
(un)refinement. Similarly to the fully penetrable cylinders model, see Section 2.3.4, the
lineal path function carries information of substantially longer range than the two-point
probability function. Also note quite high scatter of the values for larger distances r,
Fig 2.10b, which is not captured by the two-point probability function. Finally, the
three-dimensional plot of the lineal path function is presented in Fig. 2.11.
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Figure 2.10: Isotropized matrix lineal path function and variation coefficient for unidirec-
tional fiber composite

Figure 2.11: Matrix lineal path function of unidirectional fiber composite. Bitmap reso-
lution is 488× 358 pixels.

2.5 Optimization algorithm

Motivation. As already stated in the introductory Chapter 1, a substantial part of
the presented work deals with definition of periodic unit cells, which represent a real mi-
crostructure as close as possible. If we characterize the original microstructure by certain
statistical descriptors, this requirement can be easily recasted as a bound-constrained
minimization of an objective function defined in terms of selected statistical descriptors
(see Chapters 3 and 5 for explicit examples). Unfortunately, a careful inspection reveals
that the function to be minimized is non-convex, multi-modal and discontinuous due to
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finite resolution of binary representation of a microstructure18. This type of problems
calls for global optimization techniques19 with a variety of stochastic optimization meth-
ods as important representatives of these methods. Based on rather extensive numeri-
cal experiments reported in [104, 157], a stochastic algorithm employing a combination
of principles of the Parallel Simulated Annealing [150, 151], the Differential Evolution
method [236, 237] and real-encoded Genetic Algorithms [102, 160] was implemented. A
brief description of this method, denoted hereafter as Real-encoded Augmented Simulated
Annealing (RASA), is given in following sections.

2.5.1 Algorithm description

AugmentedSimulatedAnnealing
1 T = Tmax, t = 0
2 generate P0, evaluate P0

3 While (TerminationCondition == false)
4 counter = success = 0
5 While ((counter < countermax) ∧ (success < successmax))
6 counter++, t++
7 Select operator O
8 Select individual(s) It from Pt

9 Modify It by O
10 Select individual(s) I ′t from Pt

11 p = exp ((F (I ′t)− F (It))/T )
12 If (u(0, 1) ≤ p)
13 success++
14 Insert It into Pt instead of parents
15 Evaluate Pt

16 Decrease T

Table 2.3: Augmented Simulated Annealing algorithm

The Augmented Simulated Annealing method is basically the combination of two
stochastic optimization techniques – a Genetic Algorithm and a Simulated Annealing. It
uses basic principles of genetic algorithms (selection, recombination by genetic operators,
whole set of possible solutions instead of only one is optimized), but controls replacement
of parents by the Metropolis criterion (2.42). This increases the robustness of the method,
since we allow a worse child to replace its parent and thus escape from local minima, which
is in contrary to classical optimization algorithms. The algorithmic scheme of the present
implementation is summarized in Table 2.320:

18 In the pioneering work of Povirk [202], the Conjugate Gradient method was used for this type of
optimization problems. It was demonstrated in author’s thesis [297] that this approach is rather
unsuitable as the global optimum is almost never reached.

19 See, e.g., optimization tree of NEOS server [1] for a classification of different types of optimization
algorithms.

20 In the following text, the terminology commonly used in evolutionary computation is employed (see,
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Steps 1–2 Randomly generate an initial population and assign a fitness to each individ-
ual. Initial temperature is set to T0 = Tmax = T_fracFavg and minimal temperature
is determined as Tmin = T_frac_minFavg , where Favg is the average fitness value of
the initial population.

Step 7 Select an appropriate operator. Each operator is assigned a certain probability
of selection.

Step 8 Select an appropriate number of individuals (according to the operator) and gen-
erate possible replacements. To select individuals, we apply normalized geometric
ranking scheme [102]: The probability of selection of the i-th individual is given by

pi = q′(1− q)r−1, q′ =
q

1− (1− q)pop size
, (2.41)

where q is the probability of selecting the best individual in the population, r is the
rank of the i-th individual with respect to its fitness, and pop_size is the population
size.

Step 10 Look for an individual identical to possible replacement(s) in the population. If
such individual(s) exists, no replacement is performed.

Steps 11–12 Replace old individual if

u(0, 1) ≤ exp (F (Iold)− F (Inew)) /Tt, (2.42)

where F (·) is the fitness of a given individual, Tt is the actual temperature and
u(·, ·) is a random number with the uniform distribution on a given interval.

Step 16 Decrease temperature
Tt+1 = T multTt. (2.43)

If actual temperature Tt+1 is smaller than Tmin, perform reannealing – i.e. perform
steps #1–2 for, say, one half of the population.

2.5.2 List of operators

The following set of real-valued operators, proposed in [160], was implemented. Recall
that denote L and U as vectors of lower/upper bounds on unknown variables, u(a, b)
and u[a, b] as a real or integer random variable with the uniform distribution on a closed
interval 〈a, b〉. Further, we denote the i-th chromozome of generation t as CHi(t), its
genes are referred to as chij(t) and N stands for the number of unknown variables.

e.g., [81, 138, 159, 164]). Therefore, the objective function to be minimized is referred to as fitness,
the set of possible solutions is denoted as population, the individual vectors are named as individuals
and their respective components as chromozomes. Finally, the quantities written in typewriter font
are parameters of the method, which must be defined by a user.
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Uniform mutation: Let k = u[1, N ]

chij(t+ 1) =

{
u(Lj, Uj), if j = k
chij(t), otherwise,

(2.44)

Boundary mutation: Let k = u[1, N ], p = u(0, 1) and set:

chij(t+ 1) =


Lj, if j = k, p < .5
Uj, if j = k, p ≥ .5

chij(t), otherwise
(2.45)

Non-uniform mutation: Let k = u[1, N ], p = u(0, 1) and set:

chij(t+ 1) =


chij(t) + (Lj − chij(t))f, if j = k, p < .5
chij(t) + (Uj − chij(t))f, if j = k, p ≥ .5

chij(t), otherwise
(2.46)

where f = u(0, 1)(Tt/T0)
b and b is the shape parameter.

Multi-non-uniform mutation: Apply non-uniform mutation to all variables of CHi.

Simple crossover: Let k = u[1, N ] and set:

chil(t+ 1) =

{
chil(t), if l < k
chjl(t), otherwise

chjl(t+ 1) =

{
chjl(t), if l < k
chil(t), otherwise

Simple arithmetic crossover: Let k = u[1, N ], p = u(0, 1) and set:

chil(t+ 1) =

{
pchil(t) + (1− p)chjl(t), if l = k

chil(t), otherwise
(2.47)

chjl(t+ 1) =

{
pchjl(t) + (1− p)chil(t), if l = k

chjl(t), otherwise
(2.48)

Whole arithmetic crossover: Simple arithmetic crossover applied to all variables of
CHi and CHj.

Differential crossover: Let p = u(0, 1), j = [1, N ] and k = [1, N ] such that j 6= k and
set:

CHi(t+ 1) = CHi(t) + p(CHj(t)− CHk(t)). (2.49)

If CHi(t+1) is not feasible then a new random number p is generated until the feasi-
bility condition is met or the maximum number of differential crossover applications
num_dif_max is exceeded.

The interested reader may consult the works [104, 157] for more detailed information
about the RASA method and discussion of its advantages and disadvantages with respect
to alternative stochastic optimizers.



Chapter 3

MICROSCALE MODELING VIA PERIODIC FIELDS

The purpose of this chapter is to introduce a simple micromechanics-based approach
to the analysis of random composites. Due to the complexity of the microstructure,
recall Fig. 2.1a, the analysis is usually left to rely on incomplete geometrical information
about the composite microstructure. The problem is not successfully resolved even when
considering a large sample of composite as such displayed in Fig. 2.1b. Instead, it appears
preferable to exploit information contained in various statistical descriptors discussed in
detail in Chapter 2.

An essential ingredient of the present model applicable to both elastic and inelastic
regimes is a carefully selected material representative volume element (RVE) replacing the
real microstructure. Such a RVE is represented here by a periodic unit cell (PUC) con-
sisting of a small number of particles, which statistically resembles the actual composite.
For an early study on this subject we refer the reader to [202]1.

A number of ways can be used to accomplish this task. Here, following [202, 298], we
offer a simple approach based on the microstructural statistics. In particular, the PUC is
found from a certain optimization procedure. A random character of the microstructure is
accounted for through the two-point probability function Smm and/or the lineal path func-
tions Lm introduced into an objective function. The procedure is outlined in Section 3.1
together with extensive numerical tests to examine the efficiency of stochastic optimiza-
tion algorithm introduced in Section 2.5. Results are presented for the graphite-fiber tow
impregnated by the polymer matrix.

A number of theoretical problems, generally beneficial to the designer, are selected to
test the applicability of the present approach. Section 3.2 is concerned with numerical
evaluation of effective mechanical properties of composites with periodic microstructures.
Contribution due to local eigenstrains to the overall response is studied in Section 3.3; the
specific example of thermal stresses is studied in more details. The eigenstress framework
is extended in Section 3.4 to the modeling of linear viscoelastic materials and nonlinear
viscoelasticity considered in Section 3.52.

3.1 Construction of the periodic unit cell

In this section we are concerned with one of the major goals of this work: determination
of the periodic unit cell, which is statistically equivalent to the original microstructure.
In achieving this, the knowledge about material’s statistics acquired in Chapter 2 is used.
In particular, the PUC is constructed by matching a selected microstructure describing

1 Note that a definite choice of the number of particles within a unit cell generally depends on a problem
one wishes to analyze. See, e.g., recent work [?] for more details.

2 Extension to other deformation modes is rather straightforward; an interested reader may consult the
works [33, 54, 70] and an excellent overview [161] for more information on this subject.
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function of the real microstructure and the unit cell. To that end, an optimization proce-
dure based on the least square method is implemented. The optimization problem then
reduces to the minimization of an objective function involving the selected statistical de-
scriptor. Although the required statistical information can be provided by any function
presented in previous sections, the proper choice of statistical description may result in
significant improvement of the optimization process [41, 216, 226, 247, 291].

The process of finding the minimum value of the objective function is divided into
two steps: finding the optimal positions of fibers for fixed dimension of the unit cell and
then generating the optimal dimensions of the unit cell. While the second step of this
procedure represents an elementary one-dimensional minimization problem, the solution
of the first problem requires the bound-constrained minimization of multi-dimensional,
multi-modal and piecewise constant functions.

3.1.1 Objective function and problem definition

Figure 3.1: Geometry of the periodic unit cell

Consider a periodic unit cell consisting of N particles displayed in Fig. 3.1. The
geometry of such a unit cell is determined by dimensions H1 and H2 and the x and y
coordinates of all particle centers. The objective is to keep material’s statistics of both
the PUC and the actual composite as much similar as possible. At present, the particle
locations together with an optimal ratio of cell dimensionsH1/H2 are found by minimizing
an objective function involving the two-point matrix probability function Smm, matrix
lineal path function Lm or combination of both, respectively,

FS(xN , H1, H2) =
imax∑

i=−imax

jmax∑
j=−jmax

(
Smm(i, j)− Smm(i, j)

)2
, (3.1)

FL(xN , H1, H2) =

Nd−1∑
i=0

N`(i)−1∑
j=0

(
Lm(i, j)− Lm(i, j)

)2
, (3.2)

FS+L(xN , H1, H2) = FS(xN , H1, H2) + FL(xN , H1, H2), (3.3)
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where xN = {x1, y1, . . . , xN , yN}T stores the positions of particle centers of the periodic
unit cell, xi and yi correspond to the x and y coordinates of the i-th particle, H1 and
H2 are the dimensions of the unit cell, Smm and Lm stand for the value of Lm and Smm

functions corresponding to the target medium. Parameters imax and jmax define the range
of points, in which Smm functions are matched3, Nd denotes the number of rays of a
sampling template and N`(i) is the number of pixels of the i-th sampling ray, see Fig. 2.3.

The minimization of objective functions (3.1)–(3.3) can be split into two steps, where
each step corresponds to a single optimization problem. It proved advantageous to start
with an optimal spatial distribution of particle centers for given of cell dimensions H1 and
H2. The optimal ratio of cell dimensions then follows from a separate problem. Hence,
the following optimization problem is solved first.

Optimal fiber configuration. For a given number of fibers N , dimensions of a unit
cell H1 and H2 and statistical descriptor D ∈ {S, L, S + L} find the configuration of
particle centers xN(H1, H2) such that

xN(H1, H2) ∈ Argmin
xN∈B

FD(xN , H1, H2), (P1)

where B denotes a set of admissible vectors xN ,

B =
{
xN ∈ R2N : 0 ≤ xi ≤ H1, 0 ≤ yi ≤ H2, i = 1, . . . , N

}
, (3.4)

and ArgminF denotes the set of (possibly non-unique) minimizers of an objective
function FD.

After solving the above problem, we are left with only two unknown parameters, H1

and H2, to be determined. Maintaining the same fiber volume fraction cf for both the
periodic unit cell and original microstructure imposes an additional constraint on a set of
unit cell dimensions4. The second optimization problem thus reduces to the minimization
of the objective function FD with respect to the ratio η = H1/H2.

Optimal ratio H1/H2 . For known values of xN(η) and for the fixed volume fraction
of phases, find the ratio ηN such that:

ηN ∈ Argmin
η∈〈ηa;ηb〉

FD(xN(η)), (P2)

where values ηa and ηb should be chosen to cover all physically reasonable dimensions
of the unit cell.

3.1.2 Golden Section Search method

The solution of problem (P2) can be obtained through the Golden Section search method
[203, Chapter 10.1]. In principle, starting with an initial triplet of points a, b, c this

3 Note that the periodicity of the Smm function is exploited to determine values for indexes out of the
range 0, 1, . . . , (W − 1)× 0, 1, . . . , (H − 1), where W and H denote the width and height of the bitmap,
respectively.
4 See, e.g., [85] the discussion of the importance of this constraint in the context of modeling and
simulation of random media.
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method is based on generating a new point in locations, which divide intervals 〈a; b〉 or
〈b; c〉 in some prescribed ratio – the Golden section. The new point then replaces one of
the points a, b, c according to its value and position. The essentials of this method are
summarized in Table 3.15.

GoldenSectionSearch(f, a, b, c, e, ε)
1 Supply values a < b < c such that (f(a) > f(b)) ∧ (f(c) > f(b))
2 While ((c− a) < ε)
3 Determine the new point d
4 If (f(d) < f(b))
5 b = d, update a, c with respect to step 1
6 ElseIf (d < b)
7 a = d
8 Else
9 c = d

Table 3.1: Golden Section search algorithm

Step 1 The initial points a and b correspond, in the present context, to values ηa and ηb

in (P2) and the function value f(·) represents here the minimum value of function
FD found for the optimization problem (P1) for a given side ratio.

Step 3 The new point is located in the larger of two intervals 〈a; b〉 and 〈b; c〉, its distance
from the point b is (3−

√
5)/2 times the length of a larger interval.

While solving the above problem is relatively simple, the solution to the first problem (P1)
requires to locate the global minimum of multi-dimensional function, which is possesses
a large number of plateaus and local minima (see Figs. 3.2a–3.4a for explicit examples).
As suggested in [157, 291, 298], optimization problems of this kind can be tackled very
efficiently with the help of problem solving systems based on principles of evolution such
as the RASA algorithm introduced in Section 2.5.

3.1.3 Test examples

The goal here is to examine the efficiency and robustness of the RASA method for the
problems addressed in the previous section. In particular, we will examine the ability
of the algorithm to match the position of particles within artificial 5-fiber unit cell for
different objective functions. Then, the effect of selected objective function on the found
microstructure is investigated. Based on results of these experiments, a suitable strategy
for the determination of equivalent periodic unit cells is chosen.

5 For all computations performed herein, the parameters ηa and ηb were set to 1.0 and 2.0, respectively.
To check the admissibility of these bounds, Step 1 of the Algorithm 3.1, recall that due to assumed pe-
riodicity of the microstructure statistical descriptors are a priori affected by periodicity, too. Moreover,
for the side ratio η equal to 1 or 2, the period lengths are same for both coordinates. This regularity,
however, does not appear in target functions (see Figs. 2.8, 2.9, 2.10 and 2.11) so that the value of
function FD(η) for η ∈ (1; 2) should be always smaller than for the interval endpoints.
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Identification problem. To test performance of the RASA method for the solution
of problem (P1), a square periodic unit cell consisting of 5 fibers with the same volume
fraction as the idealized binary image with resolution 488 × 358 pixels was formed to
simulate the target microstructure. In particular, the dimensions of the periodic unit
cell were 50 × 50 pixels and the fiber diameter was considered 8 pixels. The sampling
template with parameters TW = TH = 49 pixels and steps ∆W = ∆H = 6 pixels was used
to determine the lineal path function Lm.

The goal of the optimization was to reconstruct this unit cell on the basis of Lm, Smm

and Lm + Smm functions, respectively. The dimension of the optimization problem was
equal to eight6, the real-valued entries of optimized vector were truncated to integer values
to obtain individual coordinate centers. The individual parameters of the RASA method
were set according to Table 3.2; the initial population was generated purely randomly.
Iteration process was terminated, if a solution with a value of objective function smaller
than 10−6 was found or a number of function evaluations exceeded 250,000. For each
objective function, the algorithm was executed twenty times to minimize the influence
of various random circumstances. For each run the number of function evaluations was
recorded together with the overall computational time. The results for different statistical
descriptors appear in Table 3.27.

Parameter Value
pop_size 64
q 0.04
p_uni_mut 0.05
p_bnd_mut 0.05
p_nun_mut 0.05
p_mnu_mut 0.05
p_smp_crs 0.10
p_sar_crs 0.10
p_war_crs 0.10
p_dif_crs 0.50
b 2.0
T_frac 10−6

T_frac_min 10−7

T_mult 0.9
num_success_max 10×pop_size
num_counter_max 50×pop_size
num_dif_max 20

Table 3.2: Parameter settings for the RASA method

Evidently, the algorithm was successful for all optimization runs with the same pa-

6 Indeed, thanks to the assumed periodicity of the microstructure, we may a priori set the center of one
particle to (0, 0), which reduces the number of unknowns to 8 instead of 10.
7 The tests were run on a computer with Intel Celeron 700 MHz processor and 256MB RAM under
the Linux operating system. The C++ code was compiled by gcc 2.96 GNU complier with -03
optimization switch.
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Descriptor Success Number of evaluations Total time
rate Min Avg Max [s]

Smm 20 / 20 7,641 31,318 59,502 593
Lm 20 / 20 22,022 43,001 108,347 43,655

Smm + Lm 20 / 20 11,018 41,820 88,027 43,278

Table 3.3: Identification problem: Number of function evaluations

rameter settings, which demonstrates the algorithm robustness. Moreover, it is evident
that the Lm-based optimization is substantially more complex, both in terms of number of
function evaluation and especially with respect the computational time, which is roughly
by two orders of magnitude larger.

To further manifest the complexity of the optimization problem (P1), two-dimensional
sections of an objective function were constructed. To the end, the center of one fiber was
successively placed in all pixels of the unit cell and the value of the objective function was
calculated. The resulting landscapes of all objective functions, appearing in Figs. 3.2a–
3.4a, clearly demonstrate that objective functions are non-convex and multi-modal8, which
further supports the choice of the global optimization algorithm RASA.

Figs. 3.2b–3.4b show examples of progress during different optimization runs together
with the evolution of optimal unit cells. Evidently, even for relatively high values of
objective function, the arrangement of the fibers within the unit cell is seemingly identical
to the target configuration (up to the translation of the periodic unit cell, of course).
This fact should be taken into account when judging the quality of the periodic unit cells
obtained from approximation of real microstructures.

Effect of descriptor selection. As the next step, the effect of the selected statistical
descriptor on the optimized periodic unit cell was addressed9. The 10-fiber square peri-
odic unit cell with the same fiber volume fraction as bitmap 2.7a was considered10. A
sampling template with parameters TW = TH = 97 pixels and ∆W = ∆H = 12 pixels was
used to determine the matrix lineal path function Lm, the matching range of the Smm

function, Eq. (3.1), was set to imax = jmax = 48 pixels. The stopping criterion as well
as parameters setting of the RASA method are the same as in the previous example.
The isotropized values of microstructural function obtained for Smm, Lmm and combined
objective functions are shown in Figs. 3.5, 3.6 and 3.7, respectively11.

It is evident that the Lm-function based approximation procedure is able to fit the
target lineal path function very well; the two-point probability function Smm, however, is
completely different from the target one. The situation is relatively better for the Smm

based reconstruction, where the target Smm function is resolved very well (note relatively

8 Another complication comes from the fact that positions of individual fibers are discrete variables;
the objective function is then piecewise constant. Figs. 3.2a–3.4a are, however, constructed from data
interpolated on a regular grid and hence does not show this feature.
9 See the works [41, 226, 247, 291] for similar discussion in the context of reconstruction of random
media.

10 The dimensions of the unit cell were 71× 71 pixels, the radius of the fiber was set to R = 8 pixels.
11 Note that error bars drawn by thin lines appearing in Figs. 3.5–3.7 correspond to the scatter of the
target data, while the thick error bars indicate the scatter of the function resulting from optimization.
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Figure 3.2: Smm-based optimization: (a) Objective function, (b) An example of optimiza-
tion run
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Figure 3.3: Lm-based optimization: (a) Objective function, (b) An example of optimiza-
tion run
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Figure 3.4: (Smm + Lm)-based optimization: (a) Objective function, (b) An example of
optimization run
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high isotropy of the reconstructed function evident from Fig. 3.5b) and the lineal path
function Lmm follows the trend set by the original function, although the anisotropy of
the reconstructed Lm function is somewhat higher than that of target function. As it
can be expected, the best results were obtained by the combined approximation process,
Fig. 3.7. Note that the isotropized value of the reconstructed function fits the target
one almost perfectly, although there is a slight anisotropy introduced in the optimized
function, especially for larger distances. On the other hand, the conformity of the Lm

function is clearly much better then for the Smm-based reconstruction. Therefore, the
combined optimization appears to be the most appropriate and reliable choice for the
definition of periodic unit cells, regardless of its computational complexity.

3.1.4 Determination of periodic unit cell

The principal objective of the present work is to construct a certain periodic unit cell,
which may substitute the real microstructure when estimating the macroscopic response
of a random composite subjected to uniform stresses or strains. In particular, we wish to
assess a sensitivity of the proposed solution procedure to the size of the unit cell (number
of particles within the PUC).

Here, this task is explored from the objective function point of view. The essential
parts of the optimization procedure are reviewed in conjunction with the RASA method.

Finding the optimal fiber configuration. The RASA method, Table 2.3, was used
to find the optimal fiber configuration with the set of real-coded genetic operators
introduced in Section 2.5.2. The combined objective function (3.3) was considered
in the optimization process. In all optimization runs, the initial population was
generated purely randomly, the settings of individual parameters of the RASA were
consistent with those presented in Table 3.2. Optimization process was terminated
if one of the following conditions was met:

• Algorithm returned value FS+L(xN , H1, H2) ≤ 10−6,

• Number of function evaluations exceeded 100,000.

The parameters imax and jmax, introduced in Eq. (3.1), were set to 48 pixels, the ma-
trix lineal path function Lm was measured by a sampling template with dimensions
TW = TH = 97 pixels and steps ∆W = ∆H = 12 pixels.

Finding the optimal side ratio. The Golden Section search method, Algorithm 3.1,
with values ηa = 1.0, ηb = 2.0 was used. The whole optimization problem was
terminated once the dimensions H1 and H2 of the unit cells corresponding to bounds
ηa and ηb agreed up to a difference of one pixel.

The results appearing in Fig. 3.8 show a variation of the final minimum of the objec-
tive function FS+L with respect to the number of particles (fibers) within the unit cell.
Evidenly, the target value of the objective function 10−6 was too severe for the present
approximation problem. However, a significant drop of the objective function can be
observed already for 10 particles within the unit cell.
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Figure 3.5: Smm based optimization results: (a) Smm function, (b) Lm function
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Figure 3.6: Lm based optimization results: (a) Smm function, (b) Lm function
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Figure 3.7: (Smm + Lm) based optimization results: (a) Smm function, (b) Lm function
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Figure 3.8: Variation of the objective function with respect to the number of particles in
the PUC

Finally, some examples of the resulting unit cells are illustrated in Fig. 3.9 together
with the hexagonal lattice shown for comparison. It is evident that periodic unit cells
resulting from optimization are able to capture the clustering of particles in the original
micrograph to some extent.

3.2 Elastic response of composites with periodic microstructure

This section illustrates the capability of the present approach by comparing the effective
response of both the real composite and a selected set of associated periodic unit cells.
With reference to the introductory part, the micromechanical analysis is restricted to
elastic, linear and nonlinear viscoelastic response of a composite aggregate to a prescribed
path of uniform macroscopic strains or stresses and uniform temperature change. The
principle objective of this section is to offer the smallest periodic unit cell, which gives
the same macroscopic elastic response as the real composite.

3.2.1 Problem setting

To narrow a vast body of material on this subject we limit our attention to studies dealing
with the finite element analysis of the periodic unit cell [11, 22, 54, 57, 84, 98, 100, 149, 161,
241, 250, to cite a few]. This approach becomes particularly attractive when applied to
“simple” microstructures such as those displayed in Fig. 3.9 and will be used throughout
this section to estimate overall elastic moduli of a graphite fiber tow impregnated by
polymer matrix, Fig. 2.1.

Consider a heterogeneous body V containing a very large number of identical periodic
unit cells Y . The overall elastic behavior of such a composite is then governed by its
microstructure, represented by a single unit cell Y , and by the behavior of individual
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Periodic unit cells: (a) Hexagonal lattice, (b) 2-fiber PUC, (c) 4-fiber PUC,
(d) 5-fiber PUC, (e) 10-fiber PUC, (f) 20-fiber PUC
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phases described by displacement, strain and stress fields in the form12

div σ(x) + b(x) = 0 in V , (3.5)

ε(x) = ∇Su(x) in V, (3.6)

σ(x) = L(x) : ε(x) in V, (3.7)

ε(x) = M(x) : σ(x) in V, (3.8)

where u is the displacement field, ε and σ are the strain and stress fields, respectively, L
is the stiffness tensor and M is the compliance tensor and ∇Su stands for the symmetric
part of the gradient of the displacement field u, ∇Su(x) =

(
∇u(x) +∇Tu(x)

)
/2 and b

is the vector of body forces. Assuming n-phase composite with constant phase moduli
and with reference to Eqs. (3.8), the elastic constitutive equations of the phases are given
by

σr(x) = Lrεr(x), εr(x) = Mrσr(x), in Vr, r = 1, . . . , n (3.9)

where Vr denotes the domain occupied by the r-th phase. Define the following mechanical
loading problems

u0(x) = E · x on ∂V, (3.10)

p0(x) = Σ · n(x) on ∂V, (3.11)

where u0 and p0 are the displacement and traction vectors at the external boundary ∂V
of the domain V of the composite; n is the outer unit normal to ∂V and E and Σ are
the applied macroscopic uniform strain and stress fields, respectively. The macroscopic
constitutive relations, corresponding to the homogenized medium are then provided by

〈σ(x)〉 = 〈L(x) : ε(x)〉 =
n∑

r=1

crLr : 〈εr(x)〉 = Lhom : E, (3.12)

〈ε(x)〉 = 〈M(x) : σ(x)〉 =
n∑

r=1

crMr : 〈σr(x)〉 = Mhom : Σ, (3.13)

where 〈·〉 stands for the spatial average of a given field with respect to the domain V , cr
is the volume fraction of the r-th phase, and Lhom and Mhom are the effective stiffness and
compliance tensors of the heterogenous material, respectively. Eqs. (3.12) and (3.13) fol-
low directly from Hill’s lemma [94]. He proved that for compatible strain and equilibrated
stress fields satisfying either the affine displacements (3.12) or uniform tractions (3.13)
boundary conditions the following relation holds

〈ε(x) : σ(x)〉 = E : Σ, (3.14)

and consequently

E : Lhom : E = 〈ε(x) : L(x) : ε(x)〉 , (3.15)

Σ : Mhom : Σ = 〈σ(x) : M(x) : σ(x)〉 . (3.16)

12 See Appendix C for more detailed discussion on this topic.
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Eq. (3.14) states in fact that the average of “microscopic” internal work is equal to the
macroscopic work done by internal forces. The above relations provide the stepping stone
for the derivation of effective properties of composite materials.

The following paragraphs outline evaluation of effective properties of a composite
aggregate represented here by the periodic material models of Fig. 3.9. Two specific
approaches corresponding to loading conditions (3.10) and (3.11) are discussed in the
sequel.

3.2.2 Formulation based on strain approach

Consider a periodic unit cell Y (PUC) subjected to a uniform strain E, see Eq. (3.10).
In view of the periodicity of the unit cell, the strain and displacement fields in the PUC
admit the following decomposition

u(x) = E · x + u∗(x) in Y (3.17)

ε(x) = E + ε∗(x) in Y. (3.18)

The first term in Eq. (3.17) corresponds to a displacement field in an effective homogeneous
medium which has the same overall properties at the composite aggregate. The fluctuation
part u∗ enters Eq. (3.17) as a consequence of the presence of heterogeneities and, due to the
periodicity of the microstructure, is Y -periodic as well; see, e.g., [18, 161, 222, 223, 241]
and Appendix C for further discussion. The periodicity of u∗ further implies that the
average of ε∗ in the unit cell vanishes as well, see, e.g, [161, 241] and references therein.
Hence

ε(x) = E + ε∗(x), 〈ε∗(x)〉 =
1

Y

∫
Y

ε∗(x) dx = 0. (3.19)

Next, assume a virtual displacement in the form δu(x) = δu∗(x), with δu∗(x) being
periodic. Then the principle of virtual work reads

〈δε∗(x) : σ(x)〉 = 〈δε∗(x)〉 : 〈σ(x)〉 = 0, (3.20)

as 〈δε∗〉 = 0 by Eq. (3.19). Note that Eq. (3.20) is essentially the Hill lemma introduced
by Eq. (3.14).

Discretization.

Solving the above relation calls for a suitable numerical technique such as the Finite
Element Method (FEM), see, e.g., [12, 21, 23, 242, 301]. To that end, we decompose the
periodic unit cell Y into Ne disjoint elements Ye, such that every element is contained only
in one phase (i.e., the discretization “respects” the phase interfaces). In this framework
the approximation of the fluctuating part of the displacement field u∗ in Eq. (3.17), written
in the engineering notation introduced in Appendix A, assumes the form

{u∗(x)} = [N(x)] {r}, (3.21)

where [N] represents shape functions for a given partition of the unit cell (the piecewise
linear approximations of the displacement fields is used in the present study) and {r} is
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the vector of unknown degrees of freedom. The corresponding strain field is then provided
by

{ε(x)} = {E}+ [B(x)] {r}. (3.22)

Introducing Eq. (3.22) into Eq. (3.20) gives for any kinematically admissible strains
{δε∗} = [B] {δr} the associated system oflinear equations in the form

[K] {r} = {f}, (3.23)

where the stiffness matrix [K] of the system and the vector of generalized nodal forces {f}
is obtained by the standard assembly A of contributions from individual elements [12, 21,
23, 242, 301]

[K] =
Ne

A
e=1

[Ke] , where [Ke] =
1

|Y |

∫
Ye

[Be]
T [Le] [Be] dYe, (3.24)

{f} =
Ne

A
e=1
{fe}, where {fe} = − 1

|Y |

∫
Ye

[Be]
T [Le] {E} dYe, (3.25)

where [Be] is the strain-displacement matrix and [Le] is the material stiffness matrix of
the e-th element, respectively. Note that constant strain triangles (CST) [12, 21, 301] are
used in this work.

System (3.23) can be used to provide the finite element approximation of the coeffi-
cients of the effective stiffness matrix

[
Lfem

]
as volume averages of the local fields derived

from the solution of successive elasticity problems. To that end, the periodic unit cell
is loaded, in turn, by each components of {E}, while the other components vanish. The
volume stress averages normalized with respect to {E} then furnish individual columns of[
Lfem

]
.

3.2.3 Formulation based on stress approach

Sometimes it is desirable to apply the overall stress Σ, Eq. (3.11), instead of the overall
strain E. Eq. (3.20) then modifies to

〈δε(x) : σ(x)〉 = δE : Σ. (3.26)

Clearly, such a loading condition leaves us with unknown overall strain E and periodic
displacement field u∗ to be determined. Substituting Eq. (3.18) into Eq. (3.26) yields

δE : 〈L(x) : (E + ε∗(x))〉+ 〈δε∗(x) : L(x) : E〉+ 〈δε∗(x) : L(x) : ε∗(x)〉 = δE : Σ.
(3.27)

Since the variations δE and δε∗(x) are independent, the preceding equation can be split
into two equalities

δE : Σ = δE : (〈L(x)〉 : E + 〈L(x) : ε∗(x)〉) (3.28)

0 = 〈δε∗(x) : L(x)〉 : E + 〈δε∗(x) : L(x) : ε∗(x)〉 .
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Discretization.

Finally, following the same lines as in the previous paragraph, the FE discretization of
Eqs. (3.21) and (3.22) provides the coupled linear system in the form [161][

K11 K12

K21 K22

]{
E
r

}
=

{
Σ
0

}
. (3.29)

where, similarly to Eqs. (3.24)–(3.25),

[K11] =
Ne

A
e=1

[K11,e] , where [K11,e] =
1

|Y |

∫
Ye

[Le] dYe, (3.30)

[K21]
T = [K12] =

Ne

A
e=1

[K12,e] , where [K12,e] =
1

|Y |

∫
Ye

[Le] [Be] dYe, (3.31)

[K22] =
Ne

A
e=1

[K22,e] , where [K22,e] =
1

|Y |

∫
Ye

[Be]
T [Le] [Be] dYe. (3.32)

The above system of equations can be used to derive the finite element method approx-
imation of the effective compliance matrix

[
Mfem

]
. In analogy with the strain approach,

the periodic unit cell is loaded, in turn, by each of the components of {Σ}, while the
other components vanish. The volume strain averages normalized with respect to {Σ}
then supply individual entries of

[
Mfem

]
.

In addition to this direct approach, the system (3.29) can be used to obtain an alterna-
tive characterization of the finite element approximation to the effective stiffness matrix[
Lfem

]
. Indeed, when eliminating the vector of the fluctuating nodal displacements {r} we

directly arrive at the form of the macroscopic constitutive law, compare with Eq. (3.12),

{Σ} =
[
Lfem

]
{E}, where

[
Lfem

]
= [K11]− [K12] [K22]

−1 [K12]
T. (3.33)

First, note that the term [K12] [K22]
−1 [K12]

T, appearing in the previous equation, can
be interpreted as the difference between the classical Voight bound [K11] [94, 267] (i.e.,
the volume average of the material stiffness matrix) and the finite element approximation
of the homogenized stiffness matrix13. In addition, Eq. (3.33) allows the interpretation
of the effective stiffness matrix as the static condensation (the Schur complement) of the
[K] matrix with respect to the “internal” fluctuating degrees of freedom {r} while the
“macroscopic” degrees of freedom {E} remain uncondensed. This shows the connection
of the presented approach with the “algebraic homogenization” methods, see, e.g., [31,
47, 87, 121, 179].

3.2.4 Implementation issues

The last unresolved feature of the solution of systems (3.23) or (3.29) is the enforcement of
the periodicity of the fluctuating displacement u∗ (same displacements on opposite sides of
the unit cell). Several methods can used to account for this condition [161, 277]: using the

13 In fact, the introduced finite element approximation represents an upper bound to the homogenized
stiffness matrix

[
Lhom

]
in the sense that the inequality {ε}T(

[
Lfem

]
−
[
Lhom

]
){ε} ≥ 0 holds for all {ε}

corresponding to the engineering representation of the strain tensor, Eq. (A.2). The proof of this
statement can be found in [57].
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possible symmetry of the periodic unit cell and loading, method of Lagrange multipliers,
penalty techniques (see also Section 5.3) and, finally, elimination method, employed in
this work unless stated otherwise. From the algorithmic point of view, the elimination
method can be simply described as prescribing the same code numbers to the nodes on
the opposite faces of the unit cell. The advantage of this method is a direct incorporation
of the periodicity of the fluctuating without additional degrees of freedom (Lagrangian
technique) or artificial constraints (penalty method). The disadvantage of this method is
the inevitable increase of the bandwidth of the stiffness matrix (especially for 3D problems)
and the need of specialized mesh generation procedures, which ensures that the opposite
sides of a PUC are identically discretized [119, 277].

For two-dimensional microstructures considered in this chapter, the two-dimensional
mesh generator Triangle 1.3 [229] was used to generate finite element meshes complying
with the periodic boundary conditions. To this end, the iterative procedure is used: in
the first step, the triangular mesh is generated for a given configuration of fibers. Each
fiber is approximated by an inscribed polygon with specified number of sides. Then, the
position of the boundary nodes for the opposite sides of the unit cell is extracted from
the mesh data and the nodes are matched together. In the next step, the nodes which are
closer than a selected distance tolerance are removed and the mesh generator is executed
again with the switch ensuring that there are no new points introduced on the boundary
of the unit cell. Finally, the radius of the fiber is iteratively adjusted until the difference
of volume fraction of the mesh matrix phase and the prescribed matrix volume fraction
is smaller than a user-defined tolerance. Examples of the unit cell meshes generated by
this procedure are shown in Fig. 3.10.

Finally, note that Eqs. (3.17) and (3.18) determine the fluctuating displacement up to
the rigid body motion; to prevent singularity of the stiffness matrix, the displacement of
the unit cell corners are constrained to zero value14.

3.2.5 Numerical results

In keeping up with our promise we now present several numerical results derived for a
given material system in order to provide estimates of the minimum size of the periodic
unit cell with regard to the material effective properties. The generalized plane-strain
state, introduced in Appendix A.2.1, is assumed throughout the analysis.

As an example we consider a composite system composed of graphite fibers embedded
in the epoxy matrix15. Material properties are listed in Table 3.4.

Phase EA ET GT νA

[GPa] [GPa] [GPa]
Fiber 386 7.6 2.6 0.41
Matrix 5.5 5.5 1.96 0.40

Table 3.4: Elastic material properties of T-50/Epoxy system

14 See, e.g., [124] for alternative methods for prescribing the periodic boundary conditions by boundary
displacements u.

15 Note that fibers are assumed to be transversally isotropic, see Section A.2.1 for relation between
engineering constants EA, ET , GT and νA and material stifness tensor.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Periodic unit cells meshes: (a) Hexagonal lattice, (b) 2-fiber PUC, (c) 4-fiber
PUC, (d) 5-fiber PUC, (e) 10-fiber PUC, (f) 20-fiber PUC.
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Unit cell Lfem
11 Lfem

22 Lfem
33 Lfem

44 cf Total K size
[GPa] [GPa] [GPa] [GPa] DOFs [kB]

Original 10.74 10.72 2.216 176.83 0.4357 34,312 140,937
2 fibers PUC 10.71 10.71 2.218 176.83 0.4357 502 236
5 fibers PUC 10.74 10.72 2.216 176.83 0.4357 1,120 746
10 fibers PUC 10.74 10.72 2.216 176.83 0.4357 2,942 2,380
Hexagonal array 10.74 10.74 2.217 176.83 0.4357 480 557

Table 3.5: Components of the effective stiffness matrix

First, to prove applicability of the proposed method, we compare the elastic moduli
derived for the original microstructure, Fig 2.1, with those found for the periodic unit cells
displayed in Fig. 3.9. Note that the solution of the original problem requires to process
of the order of magnitude more equations than the solution based on the PUC approach.

Selected components of the effective stiffness matrix
[
Lfem

]
together with the number

of total degrees of freedom and memory requirements are stored in Table 3.516. Results
obtained for the hexagonal arrangements of fibers are provided for additional comparison.
Evidently, the periodic unit cell is, unlike the hexagonal lattice corresponding to the
transversally isotropic medium, capable of capturing a slight anisotropy associated with
the real microstructure. In addition, the results in Table 3.5 also promote the PUC
consisting of 5 fibers only as the smallest one we should consider for the evaluation of
effective properties.

To further support the present approach we determined the mean value and standard
deviation of effective stiffnesses derived from five independent runs for unit cells defined
through a random cut of the original micrograph, Fig. 2.1(b). Dimensions of such a unit
cell were selected to comply with dimensions found for the PUC consisting of 10 particles.
Results, given in Table 3.7, are rather discouraging and should caution the reader against
pursuing this approach.

Modulus Mean value Standard deviation Variation coefficient
[GPa] [GPa] [%]

L11 10.74 0.013 0.12
L22 10.72 0.013 0.12
L33 2.215 0.003 0.13

Table 3.6: Variation of effective stiffnesses for five ten-particle optimal PUC

Finally, to confirm our theoretical expectations, we investigated an influence of the
proposed optimization technique on the effective moduli computed for the 10-fibers PUC
derived from five independent optimization runs. Results stored in Table 3.6 show that
the final moduli are not sensible to the particular fiber configuration (each optimization
run provides a slight different fiber arrangements having, however, the same material’s
statistics up to the two-point probability and lineal path function).

16 Note that the skyline scheme [12, 21] was used for the storage of the stiffness matrix [K]; the bandwidth
of the matrix was optimized by the Cuthill-McKee algorithm [42].
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Modulus Mean value Standard deviation Variation coefficient
[GPa] [GPa] [%]

L11 10.72 0.32 2.97
L22 10.69 0.38 3.54
L33 2.210 0.07 3.48

Table 3.7: Variation of effective stiffnesses for five randomly picked ten-particle PUC

3.3 Residual and thermal fields

Apart from mechanical loading, Eqs. (3.10) and (3.11), composite materials often experi-
ence loading by distribution of local eigenstrains or eigenstresses. Regardless of their origin
they may be interpreted as internal loads in an otherwise elastic medium [51, 52, 174].
Thermal and viscoelastic strains, admitted in the present analysis, together with trans-
formation strains discussed in Chapter 4 are specific examples of such fields. Extension to
the modeling of inelastic deformation and various damage events such as fiber debonding
and/or sliding by means of equivalent eigenstrains has also been successfully examined;
see, e.g., [33, 52, 54, 55, 268, 235].

3.3.1 Macroscopic constitutive law

Consider the RVEs of Fig. 3.9. Further suppose that in addition to mechanical loading
the periodic unit cell subjected to an eigenstress λ or eigenstrain µ fields. The local
constitutive equations (3.8) are then augmented to read, see Eqs. (A.14) and (A.16),

σ(x) = L(x) : ε(x) + λ(x), ε(x) = M(x) : σ(x) + µ(x), (3.34)

and similarly the phase constitutive equations, Eq. (3.9), become

σr(x) = Lr : εr(x) + λr, εr(x) = Mr : σr(x) + µr, (3.35)

for r = 1, . . . , n, where the local phase eigenstrain µr and eigenstress λr are related by

µr = −Mr : λr, λr = −Lr : µr. (3.36)

To proceed we recall the stress control approach and rewrite Eq. (3.26) in the form

〈δε(x) : σ(x)〉 = 〈δε(x) : L(x) : (ε(x) + λ(x))〉 = δE : Σ. (3.37)

Discretization

With reference to Eq. (3.29) the resulting system of algebraic equations arising in the
finite element formulation assumes the form[

K11 K12

K21 K22

]{
E
r

}
=

{
Σ + f1

f2

}
, (3.38)
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where the load vectors f1 and f2 resulting from the eigenstress fields are provided by

{f1} =
Ne

A
e=1
{f1,e}, where {f1,e} = − 1

|Y |

∫
Ye

{λe} dYe, (3.39)

{f2} =
Ne

A
e=1
{f2,e}, where {f2,e} = − 1

|Y |

∫
Ye

[Be]
T{λe} dYe. (3.40)

When excluding the eigenfields effects, the above relation (3.38) reduces to Eq. (3.29).

3.3.2 Thermal loads

Consider now a heterogeneous body subjected to an uniform temperature change ∆θ.
The local phase eigenstrains {µr} are then provided by, see Eq. (A.19), {µr} = {mr}∆θ,
where the thermal strain vector {mr} lists the coefficients of thermal expansion of the
phase r.

To obtain the approximation of the effective coefficient of the thermal expansion
{mfem}, the unit cell Y is subjected to the uniform temperature change ∆θ equal to
unity while the overall stress {Σ} is set to zero. The components of the overall average
strain {E} comply with the effective coefficients of thermal expansion {mfem}.

An alternative approach relies on standard volume averaging. In particular, recall the
strain volume average in the form

E =
1

|Y |

∫
Y

(M(x) : σ(x) + m(x)∆θ) dY, (3.41)

which directly provides the macroscopic constitutive law

1

|Y |

∫
Y

(M(x) : σ(x) + m(x)∆θ) dY = MhomΣ + mhom∆θ. (3.42)

After introducing the mechanical and thermal stress concentration factors B(x) and b(x)
such that [50]

σ(x) = B(x) : Σ + b(x)∆θ, (3.43)

we find

Σ =

(∫
Y

M(x) : B(x) dY

)
: Σ +

(∫
Y

M(x) : (b(x) + m(x)) dY

)
∆θ. (3.44)

When admitting only thermal effects, Σ = 0, we get from (3.43)

Σ =
n∑

r=1

cr

∫
Yr

b(x) dYr =
n∑

r=1

crbr = 0. (3.45)

After combining Eqs. (3.42) and (3.45) we arrive at the overall thermal strain vector now
given by

mhom =
1

|Y |

∫
Y

M(x) : b(x) dY + 〈m(x)〉 . (3.46)
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Assuming again piecewise uniform variation of phase thermal and elastic properties we
finally get, using the engineering notation introduced in Appendix A,

[
Mhom

]
=

n∑
r=1

cr [Mr] [Br] , {mhom} =
n∑

r=1

cr ([Mr] {br}+ {mr}) . (3.47)

At this point it is perhaps useful to recall the Levin formula [143] that reads

{m} =
n∑

r=1

cr [Br]
T{mr}. (3.48)

Note that individual columns of the finite element based approximation to the matrix[
Bfem

r

]
are found as volume averages of the local stresses derived from four independent

elasticity problems when loading the unit cell, in turn, by each component of {Σ} equal
to unity, while the other components are set to zero. Finally, the 4 × 1 vector {bfem

r } is
identified with the phase volume average of the local stresses when subjecting the unit
cell to the uniform temperature change ∆θ = 1 K.

3.3.3 Numerical results

Here we present some numerical results obtained for the graphite-epoxy composite system.
The material properties are listed in Table 3.8. The analysis was carried out under
generalized plane strain conditions.

Phase EA ET GT νA αA αT

[GPa] [GPa] [GPa] [K−1] [K−1]
Fiber 386 7.6 2.6 0.41 −1.2× 10−6 7× 10−6

Matrix 5.5 5.5 1.96 0.40 2.4× 10−5 2.4× 10−5

Table 3.8: Thermoelastic material properties of T-50/Epoxy system

The resulting effective thermal expansion coefficients for the selected periodic unit cells
together with the results obtained with the Mori-Tanaka method [17, 172] and hexagonal
arrangement of fibers are stored in Table 3.9. It turns out that the periodic unit cell
derived from the optimization procedure is again able to reflect the slight geometrical
anisotropy possessed by the current material.

Unit cell mfem
1 mfem

2 mfem
4 cf

Original 2.269× 10−5 2.248× 10−5 −7.463× 10−7 0.436
2 fibers PUC 2.273× 10−5 2.244× 10−5 −7.463× 10−7 0.436
5 fibers PUC 2.269× 10−5 2.248× 10−5 −7.462× 10−7 0.436
10 fibers PUC 2.269× 10−5 2.249× 10−5 −7.462× 10−7 0.436
Hexagonal array 2.259× 10−5 2.259× 10−5 −7.462× 10−7 0.436
Mori-Tanaka 2.250× 10−5 2.250× 10−5 −7.464× 10−7 0.436

Table 3.9: Components of the effective thermal expansion coefficients [K−1]
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Relation mfem
1 mfem

2 mfem
4

Equation (3.38) 2.269×10−5 2.249×10−5 -7.462×10−7

Equation (3.47) 2.269×10−5 2.249×10−5 -7.462×10−7

Equation (3.48) 2.269×10−5 2.249×10−5 -7.462×10−7

Table 3.10: Comparison of relations (3.38), (3.48) and (3.47) for 5-fiber PUC [K−1]

Next, Table 3.10 shows that the values of effective coefficients of thermal expansion
obtained using relations (3.38), (3.472) and (3.48) are identical.

Finally, the distribution of the local stresses resulting from loading the hexagonal
periodic unit cell by the overall strain E12 and uniform temperature change ∆θ = 1 K is
presented in Figure 3.11.

3.4 Linear viscoelastic response

Majority of material systems currently at the forefront of engineering interest experience
the time dependent behavior at sustained loading. Examples include polymer matrix
composite systems also examined in the present work. Constitutive relations that describe
the time dependent deformation of such systems usually assume linearly elastic response
of fibers while a linear viscoelastic model is appropriate for polymer matrices in most
practical applications. Inventory of contributions to viscoelastic analysis of composites
includes [32, 79, 88, 141, 144, 181, 224, 241, 249, 272, 293, to cite a few]. This section
revisits the subject in conjunction with the present modeling framework. Again, the
generalized plane strain, see Section A.2.1, is assumed in this section.

3.4.1 Macroscopic constitutive law

Following the procedure discussed in Section A.3, the constitutive equations for a vis-
coelastic matrix phase can be cast in the incremental form analogous to the Section 3.3,

{∆σm(ti)} =
[
Lm(Ê(ti), ν)

]
{∆εm(ti)}+ {∆λm(ti)}, (3.49)

where the instantaneous material stiffness matrix [L(ti)] is defined in terms of time-

dependent Young’s modulus Ê(ti), see Eq. (A.38) and time-independent Poisson’s ratio
ν; the matrix eigenstress increment {∆λm(ti)} is provided by Eqs. (A.42)–(A.43). As the
fiber is assumed to remain linearly elastic during the loading history,

{∆σf} = [Lf(k, l,m, n)] {∆εf}, (3.50)

where the time-independent material stiffness matrix of the transversally isotropic fiber
is provided by Eq. (A.29).

The above description of the material properties on the microscale is sufficient to
determine the local stress and strain fields by increments of the overall strain, {E}, or
stress {Σ}. Indeed, consider an incremental form of Eq. (3.37)〈

{δε}T{∆σ}
〉

= {δE}T{∆Σ}. (3.51)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Distribution of local stresses σ within the periodic unit cell Y , (a) stress
σ11 due to E12, (b) stress σ12 due to E12, (c) stress σ22 due to E12, (d) strain ε11 due to
∆θ = 1, (e) strain ε22 due to ∆θ = 1, (f) strain ε12 due to ∆θ = 1

Substituting the local strain increment {∆ε} = {∆E}+ {∆ε∗} together with local phase
constitutive equations (3.49) and (3.50) into Eq. (3.51) provides the desired incremental
form of Eq. (3.38) as[

K11(ti) K12(ti)
K21(ti) K22(ti)

]{
∆E(ti)
∆r(ti)

}
=

{
∆Σ(ti) + ∆f1(ti)

∆f2(ti)

}
. (3.52)

Finally, after eliminating the fluctuating displacements vector {∆r(ti)}, we arrive at the
incremental form of the macroscopic constitutive law, compare with Eq. (3.33),

{∆Σ(ti)} =
[
Lfem(ti)

]
{∆E(ti)}+ {∆Λfem(ti)}, (3.53)

where [
Lfem(ti)

]
= [K11(ti)]− [K12(ti)] [K22(ti)]

−1 [K12(ti)]
T (3.54)

{∆Λfem(ti)} = −{∆f1(ti)}+ [K12(ti)] [K22(ti)]
−1 {∆f2(ti)}, (3.55)
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Figure 3.12: Relaxation function

Also note that, when prescribing the overall strain only, the system of equations (3.52)
reduces to

[K22(ti)] {∆r(ti)} = − [K21(ti)] {∆E(ti)}+ {∆f2(ti)}. (3.56)

3.4.2 Numerical results

As an example, consider an artificial composite system listed in Table 3.11 with the matrix
properties taken from [62].

Phase EA ET GT νA a b n
[GPa] [GPa] [GPa] [GPa]−1 [GPa]−1

Fiber 386 7.6 2.6 0.41 × × ×
Matrix × × × 0.40 0.474 0.0214 0.3526

Table 3.11: Linear viscoelastic material properties of T-50/Epoxy system

The time dependent material properties of the epoxy matrix were derived experimen-
tally from a set of well cured specimens, so that the material aging was neglected [62].
The resulting experimental data were approximated by Findley’s law

J(t, τ) = a+ b(t− τ)n, R(t, τ) =
1

a+ b(t− τ)n
, (3.57)

with constants of the model a, b and n given in Table 3.11 for the time given in minutes.
The corresponding relaxation function R(t−τ) appears in Fig. 3.12. Seven elements of the
Dirichlet series expansion Eq. (A.33) uniformly distributed in log(t − τ) over the period
of approximately 100 days were assumed. The fit of the relaxation function Eq. (3.572)
by Eq. (A.342) is plotted in Fig. 3.12.

As before, the Cartesian coordinate system with the x3-axis directed along the fiber
direction in the generalized plane strain state is assumed. In the present study, the
numerical results are presented for loading applied within the transverse plane section of
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Figure 3.13: Imposed loading: (a), (b) creep test, (c), (d) relaxation test

the composite aggregate only. Both the strain and stress control loading conditions are
considered in simulations. Fig. 3.13 illustrates the time variation of the applied load.

The first set of figures (Figs. 3.14-3.17) represents the composite response derived
from the unit cell model. The macroscopic creep behavior is considered first. Fig. 3.14
shows the time variation of the overall strain developed under pure tensile and shear
stress loading conditions, respectively (Fig. 3.13a,b). Similar response resulting from the
strain loading conditions is plotted in Fig. 3.15. Individual results suggest that at least
5-fibers PUC should be used in numerical simulations to provide sufficiently accurate
response of the actual composite, Fig. 2.1. Note that the same characteristic of the
present material system was discovered when studying a pure elastic behavior of such
composites, see Section 3.2.5. However, unlike the results derived assuming pure elasticity,
the viscoelastic response of the hexagonal array model slightly deviates from that found
using the statistically equivalent unit cells. Nevertheless, a very low contrast in material
parameters in the transverse direction promotes the hexagonal array model as a reasonable
substitute for more complicated unit cells when the fiber volume fraction is sufficiently
large.

Quite different conclusion, however, can be drawn from Fig. 3.16. The macroscopic
response plotted in Fig. 3.16 provides evidence that increasing the material contrast leads
to a noticeable difference in the material response derived from the hexagonal array model
and statistically optimal unit cells. To arrive at such a result we simply replaced the
actual transversally isotropic fiber with the isotropic one (E = EA and ν = νA) to attain
a higher contrast between the material properties of the fiber and matrix phases. Also
note a possible change in the smallest RVE to be considered for numerical simulations (10-
fibers UC). Additional support for using the optimal unit cells instead of the hexagonal
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Figure 3.14: Overall response – Unit cell models: creep test
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Figure 3.15: Overall response – Unit cell models: relaxation test
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Figure 3.16: Overall response – Unit cell models: creep test assuming isotropic fiber
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Figure 3.17: Overall and local response – Unit cell models: (a) creep test, (b) relaxation
test

array model is provided by Fig. 3.17 suggesting an anisotropic character of the present
medium. Such a result cannot be attained by simple periodic unit cells. The present
approach, which draws on the existence of a unit cell statistically equivalent to the actual
composite system, is therefore preferable.

3.5 Nonlinear viscoelastic response

The aim of this section is to extend the modeling framework introduced for linearly
viscoelastic materials to non-linearly viscoelastic response of the matrix phase. The gen-
eralized compressible multi-mode Leonov model, discussed in detail in Section A.4, is
considered as a representative of constitutive laws suitable for the description of the time-
dependent behavior exhibited by such materials systems. The incremental formulation of
the present material model, Eq. (A.53), allows us to apply the theory developed in the
previous section to the selected constitutive law in a rather straightforward way17. Recall
that the generalized plane strain, Section A.2.1, is again assumed in this section.

3.5.1 Macroscopic constitutive law

To include the effects of the matrix phase nonlinearity into the problem formulation, the
incremental form of the stress-strain relation is, in analogy with Section 3.4, formulated
in terms of the time dependent material stiffness matrix [Lm(ti)] and the matrix phase
eigenstress increment {∆λm(ti)},

{∆σm(ti)} =
[
Lm(Ĝ(ti), K)

]
{∆εm(ti)}+ {∆λm(ti)}, (3.58)

where the matrix [L(ti)] is defined in terms of the time-independent bulk modulus K

and the time-dependent shear modulus Ĝ(ti), Eq. (A.54); the matrix eigenstress incre-
ment {∆λm(ti)} follows from Eqs. (A.55)–(A.58). Assumptions of the linearly elastic

17 An interested reader may inspect [270, 254, 259, and references therein] for more detailed discussion
of the presented material model and [15, 54, 231] for further alternative approaches and related topics
to the subject of this section.
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behavior and transverse isotropy of the fiber phase makes possible to write the fiber
incremental stress-strain relationship in the familiar form

{∆σf} = [Lf(k, l,m, n)] {∆εf}, (3.59)

where the fiber stiffness matrix [Lf ] is again defined in terms of the time-independent Hill’s
moduli k, l,m and n. Finally, the incremental form of the Hill lemma,〈

{δε}T{∆σ(ti)}
〉

= {δE}T{∆Σ(ti)}, (3.60)

yields the homogenized constitutive equations

{∆Σ(ti)} =
[
Lfem(ti)

]
{∆E(ti)}+ {∆Λfem(ti)}, (3.61)

with the instantaneous effective stiffness matrix
[
Lfem(ti)

]
defined by Eq. (3.54) and the

increment of the overall eigenstress {Λfem} provided by Eq. (3.55).

3.5.2 Numerical results

The material system consisting of graphite fibers embedded in the PR100/2+EM100E
epoxy resin was selected for the purpose of the present numerical study. The parameters
of the Leonov model were determined by a set of creep experiments reported in [259] and
by a subsequent transformation of creep kernel [261]. The generalized Maxwell model
consisting of ten elements was used to approximate the time-dependent behavior of the
matrix phase, see Section A.4. Resulting material data appear in Table 3.12. The elastic
properties of the fiber phase were again selected the same as those listed in Table 3.4.

Parameter Value
A [s] 4.854× 1014

τ0 [MPa] 1.57
K [MPa] 5030

µ ηµ Gµ

[MPa·s] [MPa]
1 1.4664× 101 1.1479× 100

2 1.0194× 103 1.0293× 101

3 2.4024× 104 2.4589× 101

4 2.7624× 105 2.8396× 101

5 2.9746× 106 3.0671× 101

6 4.6200× 107 4.2446× 101

7 4.7063× 108 4.9675× 101

8 5.7611× 109 6.1870× 101

9 8.9183× 1010 1.0178× 102

10 7.2765× 1013 7.2765× 102

Table 3.12: Nonlinear viscoelastic material properties of PR100/2+EM100E epoxy resin

Only the strain control is imposed in the present study as the results of Section 3.4.2
demonstrate that the selection of the minimal PUC does not depend on a particular form
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of invoked loading conditions. Each unit cell is subjected to overall strain with a constant
rate through the whole loading process; in particular, strain rates 10−3 s−1, 10−4 s−1 and
10−5 s−1 are considered.

First, the sensitivity of the overall response with respect to a selected time step ∆t
is addressed. To that end, the hexagonal unit cell was subjected to the overall shear
strain loading Ė12 = 10−4 s−1 and the overall stress response was computed for time steps
10, 1 and 0.1 s, respectively. Results, appearing in Fig. 3.18, indicate that the overall
response is not very sensitive with respect to the selected time step (setting ∆t = 1 s
gives sufficiently precise results) and that no spurious oscillations [15, 260] appear for the
selected time steps and integration scheme.
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Figure 3.18: Hexagonal array: Sensitivity with respect to time step

The following set of figures, Figs. 3.19a–d, shows the response of individual periodic
unit cells for loaded by constant strain rates Ė11 and Ė12. In all cases, the integration step
∆t was considered 1 s. Note that only the Ė11 = 10−4 s−1 loading case was considered
since the overall stress response Σ11 is practically independent of a chosen loading rate18.
The displayed results show that the overall shear response is considerably more sensitive
to the microstructure configuration than in the case of the linear viscoelasticity. Evidently,
all PUCs, thanks to almost identical elastic properties, behave very similarly during the
initial stage of the loading. In a later stage of the loading process, however, the details
of local fields distribution come into effect and cause a noticeable shift of individual
responses. Nevertheless, the obtained results allow us to conclude that the 10 fiber PUC
is sufficient for the simulation of the overall composite response.

18 This fact actually follows from the separation of the volumetric and deviatoric response in the Leonov
model, see Eq. (A.52). Indeed, due to small values of shear stresses resulting from the volumetric
loading, demonstrated in Fig. 3.11f, the instantaneous shear modulus Ĝ(ti) remains practically constant
during the deformation process and thus the composite effectively behaves as a linear elastic solid. See
also Fig. 4.9 for demonstration of this fact for the HS-based modeling.
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Figure 3.19: Overall response – Unit cell models: (a) Ė11 = 10−4 s−1, (b) Ė12 = 10−3 s−1,
(c) Ė12 = 10−4 s−1, (d) Ė12 = 10−5 s−1



Chapter 4

MICROSCALE MODELING VIA EXTENDED
HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLES

Basic energy principles were reviewed in the preceding chapter to derive effective
thermoelastic material properties of a random composite assuming periodic distribution
of the microstructure. Another approach is available when analyzing material elements
having a length scale sufficiently large compared to the microstructural length scale so it
can be treated as statistically representative of the composite. Such a traditional definition
of a representative volume element (RVE) is adopted in the present chapter when deriving
the generalized macroscopic constitutive equations of composite systems with statistically
homogeneous distribution of phases.

To be consistent with the problems discussed in the previous section we select again
the graphite fiber tow embedded in the polymer matrix as a representative of the two-
phase disordered composite media. Random character of fibers arrangement, typical for
such material systems, is conveniently described by the two-point probability function.
When used with the Hashin-Shtrikman variational principles this function provides suffi-
cient information for obtaining bounds on the thermo-elastic material properties of real
composites with statistically homogeneous microstructure.

In particular, Hashin and Shtrikman [89] presented two alternative representations of
energy functions by incorporating polarization fields relative to a homogeneous reference
(comparison) medium. In this chapter, we focus on theoretical aspects associated with the
variational formulation for anisotropic and non-homogeneous bodies with either prescribed
displacements u = u or tractions p = p along the entire boundary ∂V of the composite.
In addition, eigenstrains (stress free strains) or eigenstresses are admitted in the present
formulation.
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Figure 4.1: Body with prescribed surface displacements including eigenstresses
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4.1 Body with prescribed surface displacements and eigenstresses

With reference to the general problem displayed in Fig. 4.1 we consider an anisotropic
and heterogeneous body loaded by an affine displacement field u0(x) = E · x. The local
constitutive law including eigenstresses λ then reads

σ(x) = L(x) : ε(x) + λ(x) in V, (4.1)

u = u on ∂V. (4.2)

As suggested by Hashin-Shtrikman [89], the local stress and strain fields in Eq. (4.1) can
be found from two auxiliary boundary value problems, Fig. 4.1. The procedure starts from
assuming a geometrically identical body with a certain reference homogeneous, but gener-
ally anisotropic, medium with stiffness tensor L0 and the same prescribed displacements.
The corresponding uniform strain E and stress Σ fields are related through constitutive
law in the form

Σ = L0 : E in V, (4.3)

u0 = u on ∂V. (4.4)

Following the idea of Hashin and Shtrikman [89], we introduce the symmetric stress
polarization tensor τ such that

σ(x) = L0 : ε(x) + τ (x). (4.5)

In addition, denote

u′(x) = u(x)− u0 in V, (4.6)

u′(x) = 0 on ∂V, (4.7)

and

ε′(x) = ε(x)−E in V, (4.8)

σ′(x) = σ(x)−Σ in V. (4.9)

The objective is to formulate a variational principle describing the behavior of the non-
homogeneous and anisotropic material subjected to known eigenstresses and prescribed
boundary displacements. Schematic representation of this problem is displayed in Fig. 4.1.
Provided that both σ and Σ fields are statically admissible, the following equations have
to be satisfied (see, e.g., [21, 97, 75, 131])

div(L0 : ε(x) + τ (x)) = 0 in V, (4.10)

τ (x)− (L(x)− L0) : ε(x)− λ(x) = 0 in V, (4.11)

u′ = 0 on ∂V . (4.12)

4.1.1 Variational principle

A formulation equivalent to Eqs. (4.10) and (4.11) may be obtained by performing a
variation of the extended two-field functional

U(τ , ε′) =
1

2

∫
V

(
E : Σ− (τ (x)− λ(x)) : (L(x)− L0)

−1 : (τ (x)− λ(x))

+ 2τ (x) : E + ε′(x) : τ (x) + λ(x) : L−1(x) : λ(x)
)

dx. (4.13)
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Setting the first variation of the functional equal to zero, i.e.,

δU(τ , ε′) = −1

2

∫
V

{2δτ (x) : [(L(x)− L0)
−1 : (τ (x)− λ(x))− ε(x)] (4.14)

+ δτ (x) : ε′(x)− δε′(x) : τ (x)} dx = 0

we find that Eq. (4.11) is one of the stationarity conditions for U(τ , ε′), while the second
condition, Eq. (4.10), follows after recasting the remaining terms in the brackets. Finally,
it can be proven that the stationary value U(τ ∗, ε′∗) of the functional equals to the actual
potential energy stored in the anisotropic heterogeneous body

U(τ ∗, ε′∗) =
1

2

∫
V

(ε(x)− µ(x)) : L(x) : (ε(x)− µ(x)) dx, (4.15)

where µ = −L−1 : λ is the vector of eigenstrains (stress-free strains). The function
U(τ , ε′) attains its maximum if (L− L0) is positive definite and its minimum if (L− L0)
is negative definite1.

To make use of H-S functional, Eq. (4.13), or its variation, Eq. (4.14), one has to
express ε′ via the polarization tensor τ and non-local fourth-order operator ε∗

0(·)2

ε′(x) = ε(x)−E =

∫
V

ε∗
0(x− x′) : (τ (x′)− 〈τ 〉) dx′, (4.16)

Introducing Eq. (4.16) into Eq. (4.13) gives

U(τ ) =
1

2

∫
V

(
E : Σ− (τ (x)− λ(x)) : (L(x)− L0)

−1 : (τ (x)− λ(x)) + 2τ (x) : E

+ τ (x) :

∫
V

ε∗
0(x− x′) : (τ (x′)− 〈τ 〉) dx′ + λ(x) : L−1(x) : λ(x)

)
dx. (4.17)

4.1.2 Extension to random composites

If each phase of a randomly arranged composite is homogeneous with moduli Lr, r =
1, . . . , n, the material stiffness matrix in the sample α can be expressed as [18, 49, 133, 285],

L(x, α) =
n∑

r=1

χr(x, α)Lr. (4.18)

With the help of Eq. (2.11), the ensemble average of L is

L(x) =
n∑

r=1

Sr(x)Lr. (4.19)

1 Recall that we say that a fourth order tensor L is positive definite if ε : L : ε > 0 for all symmetric
second-order tensors ε. The proof of extremality can be found in Hashin and Shtrikman’s original
work [89] for λ = 0 and in [204] for general case.

2 See Appendix A and reference herein for additional information regarding this matter. The subscript
“0” is used to identify this operator with the homogeneous reference medium. Note that the operator
−ε∗

0 is often denoted as Γ in the literature (see, e.g., [49, 133, 134, 285, 286]).
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Similarly, the trial fields for τ and eigenstress λ at any point x located in the sample α
together with their respective ensemble averages are written as

τ (x, α) =
n∑

r=1

χr(x, α)τ r(x), τ (x) =
n∑

r=1

Sr(x)τ r(x), (4.20)

λ(x, α) =
n∑

r=1

χr(x, α)λr(x), λ(x) =
n∑

r=1

Sr(x)λr(x). (4.21)

The ensemble average of quadratic term τ : ε∗
0 : τ depends on two-point probability func-

tions, i.e.,

τ (x, α) : ε∗
0(x− x′) : τ (x′, α) =

n∑
r=1

n∑
s=1

Srs(x,x
′)τ r(x) : ε∗

0(x− x′) : τ s(x
′). (4.22)

To facilitate the solution of the present problem the material is assumed to be ergodic
and statistically homogeneous. Therefore,

L =
n∑

r=1

crLr, τ (x) =
n∑

r=1

crτ r(x), λ(x) =
n∑

r=1

crλr(x). (4.23)

Substituting Eqs. (4.23) into Eq. (4.17) yields the extended averaged form of the Hashin-
Shtrikman principle

U(τ , α) =
1

2

∫
V

E : Σ dx (4.24)

− 1

2

∑
r

∫
V

(
cr(τ r(x)− λr(x)) : (Lr − L0)

−1 : (τ r(x)− λr(x))− 2crτ r(x) : E
)

dx

− 1

2

∑
r

∑
s

∫
V

τ r(x) :

∫
V

ε∗
0(x− x′) : [Srs(x− x′)τ s(x

′)− 2cs 〈τ 〉] dx′ dx.

4.1.3 Approximate solution

Following Hashin and Shtrikman [90] and assuming a piecewise uniform variation of the
eigenstress vector λ and the polarization stress τ , i.e, (λr(x) = λr, τ r(x) = τ r), setting
〈τ 〉 =

∑
r crτ r and then performing variation with respect to τ r yield the extended form

of the stationarity condition. Employing engineering notation introduced in Appendix A,
the stationarity conditions yield the following system of linear equations,

n∑
s=1

(
δrscr([Lr]− [L0])

−1 − [Ars]
)
{τs} = cr{E}+ cr([Lr]− [L0])

−1{λr}, r = 1, . . . , n, (4.25)

where the microstructure-dependent matrices [Ars] are independent of x and are given by

[Ars] =

∫
V

[ε∗0] (x− x′) (Srs(x− x′)− crcs) dx′. (4.26)
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A symbolic inversion of the system (4.25) provides the solution for unknown components
of the polarization stress {τr} in the form3

{τr} =
n∑

s=1

cs [Trs]
(
{E}+ ([Ls]− [L0])

−1{λs}
)
, (4.27)

from which

{τ} =
n∑

r=1

n∑
s=1

crcs [Trs]
(
{E}+ ([Ls]− [L0])

−1{λs}
)
. (4.28)

Hence, according to (4.1) and (4.5), the overall constitutive law can be written as

{Σ} =
[
LHS
]
{E}+ {ΛHS}, (4.29)

where [
LHS
]

= [L0] +
n∑

r=1

n∑
s=1

crcs [Trs] , (4.30)

{ΛHS} =
n∑

r=1

n∑
s=1

crcs [Trs] ([Ls]− [L0])
−1{λs}. (4.31)

In general, solving Eq. (4.25) calls for an efficient method to tackle Eq. (4.26). A
suitable method of attack for obtaining the matrices [Ars] numerically for a binary rep-
resentation of real microstructures is presented in the Appendix B. In addition, explicit
forms of matrices [Trs] for a two-phase medium are provided.
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Figure 4.2: Body with prescribed surface tractions including eigenstrains

4.2 Body with prescribed surface tractions and eigenstrains

Recall that the primary variational principle of Hashin and Shtrikman, Eq. (4.13), mod-
ified to account for the presence of initial stresses, can be used to derive the effective
stiffness matrix

[
LHS
]

and overall eigenstress {ΛHS} of the composite medium. Similarly,
employing its dual counterpart, one may arrive at the effective compliance matrix

[
MHS

]
3 Note that matrices [Trs] correspond to individual blocks of the inverse of the left-hand side matrix of
the system (4.25).
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and overall eigenstrain {ΥHS}. In such a case the boundary value problem discussed in
Section 4.1 is modified according to Fig. 4.2.

In particular, suppose that surface tractions p = Σ ·n compatible with uniform stress
Σ are applied along the boundary ∂V of a homogeneous comparison medium (Step I)
characterized by the compliance tensor M0. The corresponding uniform strain E then
follows from the constitutive law

E = M0 : Σ in V, (4.32)

p0 = p on ∂V. (4.33)

The local stress σ(x) at point x in V is found by superimposing the solution of the local
problem displayed in Fig. 4.2 Step II. The respective governing equations are then given
by

ε(x) = M(x) : σ(x) + µ(x) on V, (4.34)

p = p on ∂V. (4.35)

ε(x) = M0 : σ(x) + γ(x) in V, (4.36)

0 = ε′ij,kl(x) + ε′kl,ij(x)− ε′ik,jl(x)− ε′jl,ik(x) in V, (4.37)

0 = γ(x)− (M(x)−M0) : σ(x)− µ(x) in V, (4.38)

p′(x) = p(x)− p0 in V, (4.39)

p′ = 0 on ∂V, (4.40)

where µ(x) is the local eigenstrain and γ(x) is called the polarization strain.

4.2.1 Variational principle

The compatibility equation (4.37) together with Eq. (4.38) follows from the extended
energy functional given by

V (γ,σ′) =
1

2

∫
V

(
Σ : E − (γ(x)− µ(x)) : (M(x)−M0)

−1 : (γ(x)− µ(x))

+ 2γ(x) : Σ + σ′(x) : γ(x)) dx. (4.41)

Again, performing a variation with respect to unknown quantities γ and σ′ gives

δV (γ,σ′) = −1

2

∫
V

{2δγ(x) : [(M(x)−M0)
−1 : (γ(x)− µ(x))− σ(x)] (4.42)

+ δγ(x) : σ′(x)− δσ′(x) : γ(x)} dx.

Setting δV (γ,σ′) = 0 we immediately recover Eq. (4.38), while the compatibility condi-
tions, Eq. (4.37), follow after recasting the remaining terms in the brackets. As for the
primary variational principle, it can be shown that the stationary value V (γ∗,σ∗′) of
the functional V (γ,σ′) equals the actual potential energy stored in the anisotropic and
heterogeneous body

V (γ∗,σ∗′) =
1

2

∫
V

(σ(x) : M(x) : σ(x) + 2σ(x) : µ(x)) dx. (4.43)
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The functional V attains its maximum (δ2V < 0) if (M−M0) is positive definite and its
minimum if (M−M0) is negative definite4.

To reduce the number of unknown quantities we first write σ′ in terms of the polar-
ization strain γ and a non-local operator σ∗

0 (·)5

σ′(x) = σ(x)−Σ =

∫
V

σ∗
0 (x− x′) : (γ(x′)− 〈γ〉) dx′ −M−1

0 : (γ(x)− 〈γ〉) . (4.44)

Next, in analogy with the primary principle, we introduce Eq. (4.44) into the dual varia-
tional principle Eq. (4.41) to get

V (γ) =
1

2

∫
V

(
Σ : E − (γ(x)− µ(x)) : (M(x)−M0)

−1 : (γ(x)− µ(x)) + 2γ(x) : Σ

+ γ(x) :

∫
V

σ∗
0 (x− x′) : (γ(x′)− 〈γ〉) dx′ − γ(x) : M−1

0 : (γ(x)− 〈γ〉)
)

dx.

(4.45)

4.2.2 Extension to random composites

Assuming that each phase r of a randomly arranged composite is homogeneous with the
compliance tensor Mr, r = 1, . . . , n, we write in analogy with Section 4.1 the material
compliance tensor, the polarization strain γ and eigenstrain µ in the sample α as

M(x, α) =
n∑

r=1

χr(x, α)Mr, γ(x, α) =
n∑

r=1

χr(x, α)γr(x), µ(x, α) =
n∑

r=1

χr(x, α)µr(x),

with the respective ensemble averages for a given ergodic and statistically homogeneous
material (compare with Eqs. (4.20)–(4.24))

M =
n∑

r=1

crMr, γ(x) =
n∑

r=1

crγr(x), µ(x) =
n∑

r=1

crµr(x). (4.46)

The ensemble average of the quadratic term γ : σ∗
0 : γ yields, in analogy with Eq. (4.22),

γ(x, α) : σ∗
0 (x− x′) : γ(x′, α) =

n∑
r=1

n∑
s=1

Srs(x− x′)γr(x) : σ∗
0 (x− x′) : γs(x

′). (4.47)

4 See again [89] for the proof for the case γ = 0 and [204] for general situation.
5 The operator σ∗

0 (·) can be identified with the operator ε∗
0 (·) when replacing γ for τ and σ∗

0 for ε∗
0 in

Eq. (B.13) and suitably modifying the boundary term to reflect the traction boundary conditions. As
for properties of tensor σ∗

0 the reader is referred to Appendix B, Eqs. (B.23) and (B.29). Recall that
subscript “0” stands for the homogeneous reference medium. Note that operator −σ∗

0 (·)−M−1
0 δ(·) is

sometimes denoted as ∆, (see, e.g., [133, 134, 286]).
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Substituting Eqs. (4.46) and (4.47) into Eq. (4.45) readily provides the extended averaged
form of the dual Hashin-Shtrikman principle

V (γ, α) =
1

2

∫
V

Σ : E dx (4.48)

− 1

2

∑
r

∫
V

(
cr(γr(x)− µr(x)) : (Mr −M0)

−1(γr(x)− µr(x))− 2crγr(x) : Σ
)

dx

+
1

2

∑
r

∑
s

∫
V

γr(x) :

∫
V

σ∗
0 (x− x′) : [Srs(x− x′)γs(x

′)− cr 〈γ〉] dx′ dx

− 1

2

∑
r

∫
V

crγr(x) : M−1
0 : (γr(x)− 〈γ〉) dx.

4.2.3 Approximate solution

In analogy with Eq. (4.25) and [90] we further admit only piecewise uniform variation of
eigenstrain tensor µ and polarization strain tensor γ (µr(x) = µr,γr(x) = γr). Next,
after setting 〈γ〉 =

∑
r γrcr and performing variation with respect to γr we arrive at the

extended form of the stationarity conditions

cr
[
(Mr −M0)

−1 + M−1
0

]
: γr(x)

−
n∑

s=1

∫
V

{
σ∗

0 (x− x′) [Srs(x− x′)− crcs] + M−1
0 crcs

}
: γs(x

′) dx′ =

= crΣ + (Mr −M0)
−1 : µr(x)cr, r = 1, 2, . . . , n, (4.49)

or, following Eq. (4.25), again in the engineering notation,

n∑
s=1

(
δrscr

(
([Mr]− [M0])

−1 + [M0]
−1)− crcs [M0]

−1 − [Brs]
)
{γs}

= cr{Σ}+ cr([Mr]− [M0])
−1{µr}, r = 1, 2, . . . , n, (4.50)

where evaluation of the microstructure-dependent matrices [Brs]

[Brs] =

∫
V

[σ∗0] (x− x′) (Srs(x− x′)− crcs) dx′, (4.51)

is again outlined in the Appendix B. Similarly to Eqs. (4.27) and (4.28) we write after
symbolic inversion of Eq. (4.50) the desired components of the polarization tensor {γr} in
the form

{γr} =
n∑

s=1

cs [Rrs]
(
{Σ}+ ([Ms]− [M0])

−1{µs}
)
, (4.52)

and finally

{γ} =
n∑

r=1

n∑
s=1

crcs [Rrs]
(
{Σ}+ ([Ms]− [M0])

−1{µs}
)
. (4.53)

The macroscopic constitutive law is now given by

{E} =
[
MHS

]
{Σ}+ {ΥHS}, (4.54)
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with

[
MHS

]
= [M0] +

n∑
r=1

n∑
s=1

crcs [Rrs] , (4.55)

{ΥHS} =
n∑

r=1

n∑
s=1

crcs [Rrs] ([Ms]− [M0])
−1{µs}. (4.56)

4.3 Linear elasticity and thermal strains

To make comparisons with the finite element approach we consider again the graphite
fiber tow of Fig. 2.2. The primary goal is to recover the effective thermo-elastic properties
already derived in Chapter 3 by the finite element approach.

Starting with the primary H-S variational principle, Section 4.1, the thermo-elastic
macroscopic constitutive law receives the form6

{Σ} =
[
LHS
]
{E}+ {ΛHS} =

[
LHS
] (
{E} − {mHS}∆θ

)
, (4.57)

where {mHS} is the overall thermal strain vector of the expansion coefficients. To fill
individual entries in

[
LHS
]

and {mHS} requires first to solve Eq. (4.31) for unknown com-
ponents of vectors {τr}. Eqs. (4.1) and (4.5) then readily provide the average stress {Σ}
as

{Σ} =
n∑

r=1

cr
{
[Lr] ([Lr]− [L0])

−1 {τr}+ [Lr]
(
([Lr]− [L0])

−1 − [I]
)
{mr}∆θ

}
. (4.58)

Referring to Section 3.2.5 the coefficients of the stiffness matrix
[
LHS
]

are found from
solutions of four successive elasticity problems. In each solution the medium, free of
thermal strains, is subjected to overall strain {E} with only one nonzero component of
unit magnitude. The overall stress, resulting from Eq. (4.58), then furnishes the column
of the (4×4) matrix

[
LHS
]

corresponding to the selected nonzero component of {E} as a
function of [L0]. Therefore, having properly chosen components of the stiffness matrix of
the comparison medium [L0] we may arrive either at the lower or upper bound on elastic
stiffnesses of heterogeneous media. In particular, we select [L0] as an artificial material
with coefficients [L0]ij

<
>

[Lr]ij smallest (largest) of all [Lr]ij in V 7.

Results appear in Table 4.18. The FFT combined with the generalized trapezoid rule
is used to evaluate the microstructure dependent matrices [Ars] (recall Section 2.3.1 and
Appendix B).

The thermal strain coefficients are obtained in the similar way by setting {E} = {0}
and applying the temperature change ∆θ equal to unity. The stress from Eq. (4.58) is the

6 In accordance with Chapter 3, the generalized plane strain state is assumed. See Section A.2.1 for
more details and notation used hereafter.

7 Precisely speaking, to avoid singularities of matrices [Lr]−[L0], we used values (1+ε) [Lr] when selecting
the matrix with smallest entries and values (1− ε) [Lr] when selecting matrix with largest entries with
the value ε set to ≈ 10−4.
8 Material properties of individual phases are taken from Table 3.8. The UB and LB columns in
Tables 4.1–4.4 correspond to the lower bound (the matrix [L0] with the smallest entries) and to the
upper bound (the matrix selected [L0] the largest entries), respectively.
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Bitmap LHS
11 LHS

22 LHS
33

resolution LB FEM UB LB FEM UB LB FEM UB
122 × 84 10.733 10.740 10.770 10.713 10.724 10.746 2.211 2.215 2.218
244 × 179 10.740 10.740 10.777 10.720 10.724 10.752 2.209 2.216 2.216
488 × 358 10.730 10.740 10.763 10.721 10.724 10.754 2.209 2.216 2.216
976 × 716 10.730 10.740 10.763 10.721 10.724 10.764 2.209 2.216 2.216

Table 4.1: Effective elastic stiffnesses [GPa]

overall eigenstress {ΛHS}. The overall thermal strain {mHS} then follows from (4.58) as

{mHS} = −
[
LHS
]−1 {ΛHS}. (4.59)

Results are summarized in Table 4.2.

Bitmap mHS
1 × 105 mHS

2 × 105 mHS
4 × 107 cf

resolution LB FEM UB LB FEM UB LB FEM UB
122 × 84 2.248 2.269 2.278 2.230 2.248 2.253 -7.488 -7.463 -7.504 0.438
244 × 179 2.256 2.269 2.285 2.236 2.248 2.259 -7.455 -7.463 -7.471 0.436
488 × 358 2.256 2.269 2.287 2.237 2.248 2.260 -7.455 -7.463 -7.471 0.436
976 × 716 2.256 2.269 2.287 2.237 2.248 2.260 -7.455 -7.463 -7.471 0.436

Table 4.2: Effective coefficients of thermal expansion [K−1]

If the stress control is applied, the dual variational principle Eq. (4.41) can be invoked
to derive the coefficients of the compliance matrix

[
MHS

]
. As for

[
LHS
]

they follow again
from solutions of four successive elasticity problems. In each solution the medium, free
of thermal strains, is subjected to overall stress {Σ} with only one nonzero component of
unit magnitude. The overall strain, given by

{E} =
[
MHS

]
{Σ}+ {ΥHS} =

[
MHS

]
{Σ}+ {mHS}∆θ, (4.60)

then furnishes a column of the (4×4) matrix
[
MHS

]
corresponding to the selected nonzero

component of {Σ}. Depending on individual entries of the compliance matrix [M0] we
may obtain either the lower or upper bound on the effective elastic compliance matrix of
a heterogeneous medium. In particular, we select [M0] as an artificial material with coef-
ficients [M0]ij

<
>

[Mr]ij smallest (largest) of all [Mr]ij in V . Results are stored in Table 4.3.

Bitmap MHS
11 MHS

22 MHS
33

resolution LB FEM UB LB FEM UB LB FEM UB
244 × 179 1.4293 1.4307 1.4312 1.4312 1.4325 1.4330 4.517 4.521 4.524
488 × 358 1.4298 1.4307 1.4317 1.4316 1.4325 1.4334 4.518 4.521 4.525
976 × 716 1.4298 1.4307 1.4318 1.4317 1.4325 1.4334 4.519 4.521 4.525

Table 4.3: Effective elastic compliances [GPa−1] ×104
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Eq. (4.60) can be further used to provide the overall coefficients of thermal expansion
when setting ∆θ = 1 and {Σ} = {0}. As expected, they were found identical with
those derived from the primary variational principle. Similar agreement between elastic
stiffnesses and compliances is evident from Table 4.49.

Bitmap IP-LB P-LB D-LB P-UB D-UP IP-UB
resolution LHS

11 LHS
11 MHS−1

11 LHS
11 MHS−1

11 LHS
11

244 × 179 10.744 10.759 10.759 10.772 10.772 10.754
488 × 358 10.744 10.755 10.755 10.766 10.766 10.754
976 × 716 10.744 10.754 10.754 10.765 10.765 10.754

Bitmap IP-LB P-LB D-LB P-UB D-UP IP-UB
resolution LHS

33 LHS
33 MHS−1

33 LHS
33 MHS−1

33 LHS
33

244 × 179 2.211 2.211 2.213 2.216 2.216 2.214
488 × 358 2.211 2.210 2.210 2.215 2.215 2.214
976 × 716 2.211 2.210 2.210 2.215 2.215 2.214

Table 4.4: Effective elastic compliances [GPa−1]

Clearly, the finite element solutions from Chapter 3 fall within individual bounds pro-
vided by Hashin-Shtrikman variational principles. Tables 4.1 and 4.2 further demonstrate
insensivity of the solution to the selected bitmap resolution, as long as the volume fraction
of the inclusion is the same (see Section 2.4.3). In addition, attributed to the assumed
statistical homogeneity, the results confirm a slight anisotropy of the present medium sug-
gested by the results from the previous chapter. In terms of computer time, the efficiency
of the present approach when compared to the FEM analysis is doubtless. Nevertheless,
to fully accept this method a number of other numerical assement, particularly for more
complex material behavior, are needed.

4.4 Linear viscoelasticity

This section outlines implementation of the H-S principles to solve the viscoelastic problem
as an alternative to the FEM analysis discussed in Chapter 3. This approach may become
advantageous over the sometimes time consuming implementation of finite elements, par-
ticularly when no information about the nature of local fields is needed, but instead a
notion about the phase volume averages of field variables is sufficient in simulations of
the material behavior.

4.4.1 Macroscopic constitutive law

To introduce the viscoelastic effects we first recall Eq. (A.37). Then, in analogy with
Eqs. (3.53) and (3.56), the incremental form of Eq. (4.29) becomes

{∆Σ(ti)} =
[
LHS(ti)

]
{∆E(ti)}+ {∆ΛHS(ti)}. (4.61)

9 Letters P and D in Table 4.4 stand for the primary and dual variational principles, respectively, and
IP denotes results obtained from the primary variational principle when assuming the statistically
isotropic material.
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Note that the fiber phase is assumed elastic and linear viscoelastic behavior of the matrix
phase is governed by incremental relations (A.41)–(A.43), i.e.,

[Lf ] = [L(k, l,m, n)] , {λf} = {0}, (4.62)

[Lm(ti)] =
[
L(Ê(ti), ν)

]
, {∆λm(ti)} =

M∑
µ=1

{∆λm,µ(ti)}. (4.63)

Eq. (4.61) then drives the solution of a viscoelastic problem under strain control loading
conditions suitable for modeling the stress relaxation.

To find the solution to a stress control viscoelastic problem such as creep experiment,
we replace Eq. (4.54) by its incremental counterpart such that

{∆E(ti)} =
[
MHS(ti)

]
{∆Σ(ti)}+ {∆ΥHS(ti)}. (4.64)

4.4.2 Numerical results

To compare the present approach with the finite element estimates of Section 3.4 we con-
sider again the material system of Fig. 2.1b with the respective binary images displayed
in Figs. 2.2 and 2.7 and the elastic properties stored in Table 3.11. Both the strain and
stress control loading conditions are considered in simulations. The same loading condi-
tions as in Section 3.4, Fig. 3.13, are considered. Furthermore, recall that the primary H-S
principle may be invoked to simulate the relaxation response while the dual H-S principle
should be called to study the creep behavior. In both instances, however, the resulting
representation of the viscoelastic response is governed by the selection of a homogeneous
comparison medium ([L0] , [M0]). To this end, we draw the reader’s attention to Fig. 4.3.
First, recall Table 3.11 and notice that the matrix moduli are indeed weaker than those of
fiber. Therefore, according to [89], we select the matrix phase to fill individual entries of
[L0] and [M0] providing we search for a lower bound on the relaxation response (Fig. 4.3a)
and an upper bound on the creep response (Fig. 4.3b), respectively. The fiber phase is
then selected to yield estimates on opposite bounds. A number of other results, contained
within the H-S bounds, can be derived when mixing individual phases to set [L0] and [M0]
(e.g., [L0] = 1

2
([Lf ] + [Lm]))10.

Fig. 4.3 gives some idea of this approach assuming hexagonal packing of fibers. One
noteworthy feature of the hexagonal array model is the correspondence of the periodic
hexagonal unit cell with the Mori-Tanaka averaging technique. It is well known that the
Mori-Tanaka estimates of the overall response of composites with weak matrices corre-
spond to the lower and upper bounds derived from the primary and dual H-S variational
principles [276], respectively. From this point of view one may also judge the results
derived from the periodic hexagonal unit cell (solid lines in Fig. 4.3a,b). Therefore, in
order to make the results found from the H-S variational principles comparable with those
derived previously using the optimal unit cells, we selected the matrix phase to create
the 4× 4 homogeneous stiffness [L0] and compliance [M0] matrices. Also note that these
matrices are kept constant throughout the integration process. This assumption is ac-
ceptable since the instantaneous moduli of the matrix phase do not vary considerably for
the selected time-stepping procedure11.

10 See article [53] for systematic study of this idea.
11 See Section 4.5.2 for the demonstration of this fact in the context of nonlinear viscoelasticity.
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Figure 4.3: Overall response – hexagonal packing: (a) creep test, (b) relaxation test

As outlined in Section 4.1, evaluation of the overall response of random composites
requires first selection of a RVE. Binary images of the RVE of the present material system,
Fig. 2.1b, which complies with requirements discussed in Section 2.1, are displayed in
Fig. 2.7. The RVEs of Fig. 2.7 were employed to evaluate the microstructure dependent
matrices in Eqs. (4.26) and (4.51). The effect of bitmap resolution on the overall response
was examined first. Results appear in Figs. 4.4 and 4.5. Evidently, even low resolution of
244× 179 pixels provides sufficiently accurate results. This should also hold for combined
loading. Such a result is quite encouraging, particularly if one would like to increase the
size of the RVE.

Fig. 4.6 further confirms ability of this approach to model an anisotropic character of
the present material system already suggested by the FEM analysis of optimal periodic
unit cells. Finally, we bring some comparison between the UC analysis and the H-S
variational principles plotted in Fig. 4.7. As expected, recall our previous discussion on
H-S bounds, the relaxation data obtained from 5-fibers periodic UC correlates fairly well
with the H-S lower bound and similarly the creep response of UC is found close to the
H-S upper bound. Thus the applicability of both approaches to simulate the viscoelastic
behavior of statistically homogeneous material systems such as the one under present
study is confirmed.

4.5 Nonlinear viscoelasticity

Following the route set by the finite element method approach, the results of the linear
viscoelasticity are extended to non-linear viscoelastic materials in this section. Similarly
to the finite element procedure, it appears advantageous to consider the incremental form
of the Leonov model introduced in Section A.4 to estimate the overall response of the
selected material system. Then, the transformation field framework used in the linear
viscoelasticity case can be easily extended to nonlinearly viscoelastic response.
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Figure 4.4: Overall response – Hashin-Shtrikman principle: creep test
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Figure 4.5: Overall response – Hashin-Shtrikman principle: relaxation test
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Figure 4.6: Overall and local response – Hashin-Shtrikman principle: (a) creep test, (b)
relaxation test
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Figure 4.7: Overall and local response – UC vs. H-S: (a) creep test, (b) relaxation test

4.5.1 Macroscopic constitutive law

The incremental form of stress-strain relationship for a linearly elastic and transversally
isotropic fiber phase assumes the familiar form

{∆σf} = [Lf(k, l,m, n)] {∆εf}, (4.65)

where, similarly to Eq. (4.62), the fiber stiffness matrix [Lf ] is defined in terms of time-
independent Hill’s moduli k, l,m and n. Following the procedure discussed in Section A.4,
the incremental constitutive equations for the matrix phase is given by

{∆σm(ti)} =
[
Lm(Ĝ(ti), K)

]
{∆εm(ti)}+ {∆λm(ti)}, (4.66)

where the instantaneous material stiffness matrix [L(ti)] is defined in terms of the time-

independent bulk modulusK and the time-dependent shear modulus Ĝ(ti), see Eq. (A.54).
The matrix eigenstress increment {∆λm(ti)} then follows from Eqs. (A.55)–(A.58).

The overall response to a strain loading increment {∆E(ti)} is then, in analogy to
Eq. (4.61), provided by

{∆Σ(ti)} =
[
LHS(ti)

]
{∆E(ti)}+ {∆ΛHS(ti)}, (4.67)

and the relation
{∆E(ti)} =

[
MHS(ti)

]
{∆Σ(ti)}+ {∆ΥHS(ti)} (4.68)

can be used to determine the overall response to an overall stress increment {∆Σ(ti)}.

4.5.2 Numerical results

The composite system with material parameters identical to the data presented in Sec-
tion 3.5.2 is used for numerical experiments performed in this section. Similarly to the
finite element approach, only the loading by constant overall strain rate is investigated.
Further, based on results of the previous section, the reference stiffness matrix [L0] was
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Figure 4.8: Overall response – hexagonal packing for Ė12 = 10−4 s−1: (a) Sensitivity with
respect to time step, (b) Sensitivity with respect to reference medium update

selected as the smallest of all [Lr]ij appearing in the RVE. Recall that the generalized
plane strain is again assumed in the analysis.

First, the sensitivity of the overall response with respect to time step ∆t and the
choice of the reference stiffness matrix [L0] is analyzed. To study the influence of the

reference stiffness matrix [L0], the ratio |1 − Ĝ(ti)/Ĝref | was used to control updating of

the reference medium. If this ratio exceeded a given tolerance ξ, the reference value Ĝref

was set to Ĝ(ti) and the reference stiffness matrix [L0] was set to the corresponding value.
In addition, the computation was run with time steps 10 s, 1 s and 0.1 s, respectively,
to asses the influence of the chosen time step. The results of these experiments for an
isotropic microstructure with the same volume fraction as the original material appear in
Fig. 4.8. Apparently, the H-S based procedure is rather insensitive to the selected time
step as well as to updating of the reference medium; to get practically indistinguishable
overall response it suffices to set the value of ∆t = 1 s and ξ = 0.01.

As the second step, an effect of a bitmap resolution on the overall response of the
composite material is addressed. Similarly to linear elasticity and viscoelasticity, the
results displayed in Fig. 4.9 again demonstrate the insensivity of the overall response on a
bitmap resolution; in particular, the bitmap with dimensions 488×358 pixels gives results
identical to the highest resolution 976× 716 pixels for both E11 and E12 loading.

The following set of figures, Figs. 4.11a–d, shows the overall response for various rates
of overall strain loading together with the finite element method results presented for the
comparison.

Evidently, the agreement between the H-S based approach and the finite element
modeling is satisfactory for E11 loading. This can be, similarly to the finite element
approach, attributed to the negligible shear stresses developed during the loading process
and to the assumption of linear volumetric response of the Leonov model (see footnote
on page 62). The results found for the shear loading E12, however, demonstrate that the
H-S based approach substantially overestimates the overall shear stress, especially in later
stage of the loading process. To shed a light on this phenomenon, the distribution of the
instantaneous shear modulus Ĝ for the hexagonal periodic unit cell is plotted in Fig. 4.10.

Evidently, the shear modulus Ĝ is no longer phasewise constant at the end of the
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Figure 4.9: Overall response – Hashin-Shtrikman principle: Effect of a bitmap resolution
(a) Ė11 = 10−4 s−1, (b) Ė12 = 10−4 s−1

Figure 4.10: Hexagonal array: distribution of instantaneous matrix shear modulus at the
end of loading for Ė12 = 10−5 s−1.

loading interval. Thus, the assumption of the homogeneity of phase moduli, Eq. (4.3),
is no longer valid, which results in a substantial deterioration of the performance of the
Hashin-Shtrikman based approach. Nevertheless, the maximum difference between the
H-S and the FEM modeling is approximately 10%; if such a modeling error is acceptable
or taken into account (using, for example, the goal-adapted modeling framework [185]),
the proposed procedure can be employed as an efficient substitute to the finite element
method.

Finally, for the sake of completeness, the anisotropic character of the examined ma-
terial system predicted by the Hashin-Shtrikman based approach is demonstrated by
plotting phase stresses due to E11 and E22 loading, see Figs. 4.12a and 4.12b.
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Figure 4.11: Overall response: Hashin-Shtrikman variational principles, (a) Ė11 =
10−4 s−1, (b) Ė12 = 10−3 s−1, (c) Ė12 = 10−4 s−1, (d) Ė12 = 10−5 s−1.

0 0.01 0.02 0.03 0.04 0.05
E

0

100

200

300

400

σ 
[M

P
a]

σf
11 due to E11

σf
22 due to E11

σf
11 due to E22

σf
22 due to E22

0 0.01 0.02 0.03 0.04 0.05
E

0

50

100

150

200

250

300

350

σ 
[M

P
a]

σm
11 due to E11

σm
22 due to E11

σm
11 due to E22

σm
22 due to E22

(a) (b)

Figure 4.12: Local response – Hashin-Shtrikman principle (a) Fiber phase, (b) Matrix
phase



Chapter 5

MESOSCALE MODELING VIA PERIODIC FIELDS

Employing the ideas introduced in Chapter 3 for the modeling of composites with
irregular distribution of reinforcements, the present chapter deals with the possibility of
application of these principles to the plain weave composite modeling1. It is an experi-
mentally confirmed fact that the overall behavior of such composites is strongly influenced
by its geometrical details. In this context, the waviness, misalignment and nonuniform
cross-sectional aspect ratio of tows in the longitudinal direction [128, 190, 214, 294], re-
sulting from manufacturing process, play the main role in assessing the effective behavior
of such composites.

In this regard, the formulation of a reliable and accurate geometrical and numerical
model is of paramount importance. Note that idealized models of geometry, which do not
account for reinforcement imperfections, are not valid for carefully prepared laboratory
samples. It thus appears inevitable to replace such models with a geometrical model,
which is still simple and computationally attractive, but yet reflects, at least to some
extent, the real geometry of a composite. In achieving this goal, we follow the path set in
Chapter 3 and formulate a certain optimal periodic unit cell, which is derived by matching
material statistics of a target microstructure, obtained for a two-dimensional section(s) of
a three-dimensional microstructure, and the searched PUC2. In the present work, the con-
figuration of the optimal PUC cell provided by the three-dimensional geometrical model
of Kuhn and Charalambides [135] is implemented. Once the parameters of geometrical
model are known, the finite element method approach is employed to acquire the overall
mesoscopic response of the selected material system.

The chapter is organized as follows. Section 5.1 introduces the present geometrical
model of plain weave composite and determines a set of parameters needed for the descrip-
tion of the Periodic Unit Cell. Then, detailed formulation of the optimization problem
used to derive an optimal PUC is presented and the performance of the RASA algorithm
for solving the present problem is examined. The numerical evaluation of the overall
response of woven composites by the finite element method including the effect of local
eigenstresses fields is studied in Section 5.2. Finally, the application of the H-S microscale
modeling is demonstrated for the construction of failure surfaces of a 6× 6 braided com-
posite with prestressed fibers in Section 5.3.

1 Recall that plain weave textile composites consist of mutually orthogonal warp and fill tows which
are interlaced. See, e.g., [40] for more details and systematic classification of other types of textile
composites.

2 approach closely resembles the problem of reconstructing three-dimensional microstructure from two-
dimensional data (the key problem in mathematical morphology, see [238]). Although techniques for
constructing three dimensional microstructural images have been recently introduced [146, 176, 253,
and references therein], they are rather complicated and extremely computationally demanding even for
elastic materials. Moreover, it was demonstrated in [152, 292] that, at least for some classes of materi-
als, the data obtained from two-dimensional sections determine the three-dimensional microstructural
configuration with satisfactory details.
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5.1 Construction of the periodic unit cell

As suggested in the introductory part, a realistic model of composite geometry is needed in
order to obtain reliable estimates of both the local and overall response of real composites
under certain loading conditions. However, such a model, to be statistically representative
of the composite, might be quite complex leading to an enormous computational effort.
The computational feasibility on the other hand calls for rather simple models usually
specified in terms of small periodic unit cells. The present section attempts to reconcile
these competing requirements by formulating a small periodic unit cell, which yet incor-
porates the knowledge of real composite geometry with various types of reinforcement
imperfections.

5.1.1 Geometry of the periodic unit cell

In this contribution, only the irregularities represented by disordered path of the fiber
tow are considered. In general, such imperfections can be quantified by taking images of
tow cross-section along its longitudinal axis [128, 190, 294]. Literature offers a manifold
of geometric models for the description of plain weave geometry with varying level of
sophistication; namely, the piecewise constant or linear geometry [30, 191, 300], sinusoidal
models with either elliptical [228, 281] or lenticular [34, 43, 177, 264] cross-section and
CAD/CAM-based modeling [240, 275, 277] have been applied to the description of plain
weave composite geometry. In this work, the model of fabric weave composite proposed
by Kuhn and Charalambides [135] is used as it is reasonably simple to implement and
takes typical features of real composites, reported in [294], into account. The present
model is fully determined by parameters a, b, g and h, see Fig. 5.1.
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Figure 5.1: Geometrical parameters of a plain weave PUC

The profile of the warp tow centroid pc is described by the relation

pc(x) = − sin
(πx
a

)
, (5.1)

while the profile of the fill tow centroid follows from the previous relation by an appropriate
change of x and y coordinates and the sign (see Eq. (5.8)). To maintain compatibility
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between warp and fill tows, the internal profiles of tows pi are provided by

pi(x) = sin

(
π|x|
a

)
. (5.2)

The external profile pe is derived from analogous relation with amplitude modified to take
into account the non-symmetry of tows and the presence of the gap between tows g,

pe(x) = (1 + β) sin

(
π(|x| − g/2)

a− g

)
− β, (5.3)

with the coefficient β defined as

β = sin
(πg

2a

)
. (5.4)

The auxiliary functions R, FH and FR are used to linearly interpolate these one dimen-
sional functions in order to obtain representation of lower and upper surfaces of individual
tows,

FH(x) = H
(
|x| − g

2

)
−H

(
|x|+ g

2
− a
)
, (5.5)

R(x) =


x/g + 1/2, |x| ≤ g/2,
H(x), g/2 < |x| ≤ a− g/2,
(sgn (x)a− x)/g + 1/2, a− g/2 < |x| ≤ a,

(5.6)

FR(η, x, y) = R(η sgn (y)x), (5.7)

where H stands for the Heaviside function, sgn denotes the signum function and param-
eter η = 1 is used for the upper surface of a tow while η = −1 corresponds to the lower
surface of a tow. Finally, the warp and fill tow surfaces are determined by

swarp(η, x, y) = stow(η, x, y), sfill(η, x, y) = −stow(−η, y, x), (5.8)

where the general tow surface function stow(η, x, y) for positions |x| ≤ a and |y| ≤ a is
defined as

stow(η, x, y) =
b

2
FH(y) (sgn (y)pc(x) + ηFR(η, x, y)pi(y) + ηFR(−η, x, y)pe(y)) . (5.9)

Finally, the orientation of fibers within the tows is assumed to be parallel to the centroid
axes of the tows; the corresponding angles of rotation are given by

θwarp
y (x, y) = arctan

(
−πb

2a
sgn (y) cos(

πx

a
)

)
, (5.10)

θfill
x (x, y) = arctan

(
−πb

2a
sgn (x) cos(

πy

a
)

)
. (5.11)

For the transverse cross-sectional plane located in the middle of the weave, the fill and



Mesoscale modeling via periodic fields 85

warp bundle surface functions sfill and swarp, reduce to, see Fig. 5.1,

slow(x) =


b

2

(
sin
(πx
a

)
− x(1− δ)

g
− 1

2
(1 + δ)

)
0 ≤ x <

g

2

− b
2

(
1 + (1 + β) sin

(
π(2x− g)

2(a− g)
− β

))
g

2
≤ x ≤ a

2

, (5.12)

sup(x) =


b

2

(
sin
(πx
a

)
− x(1− δ)

g
+

1

2
(1 + δ)

)
0 ≤ x <

g

2
b

2

(
sin
(πx
a

)
+ δ
) g

2
≤ x ≤ a

2

, (5.13)

δ = (1 + β)cos(β). Values of function slow and sup for x > a/2 and x < 0 follow from
obvious symmetry of the PUC.

5.1.2 Objective function and problem definition

Having chosen the model for the description of the geometry of a PUC, one needs to
define a certain objective function, which quantifies the difference between the original
microstructure and the idealized periodic unit cell. Following the general procedure dis-
cussed in Chapter 2, the fundamental bundle characteristic function χf (x, z)

3 is introduced
first. Using Eqs. (5.12)–(5.13), the function χf (x, z) is simply provided by the relation

χf (x, z) =

{
1, if slow(x) ≤ z ≤ sup(x)
0, otherwise

, (5.14)

i.e., χf (x, z) is equal to one if a point (x, z) is located in the domain occupied by the
bundle phase Yf and zero otherwise.

Similarly to the microscale analysis, the characteristic function χf can be employed to
discretize the PUC cross section into the form of a W ×H bitmap. Then, assuming the
periodicity of the microstructure, the two point probability function Srs can be efficiently
computed by the discrete Fourier transform, recall Eq. (2.33),

Srs(m,n) =
1

WH
IDFT{DFT{χr(m,n)}DFT{χs(m,n)}}, (5.15)

where the phases r and s are considered as either bundle phase f or the matrix phase m,
respectively. The matrix lineal path function Lm for a given digitized periodic unit cell
can be determined by the sampling template method introduced in Section 2.3.2.

To determine optimal parameters of the periodic unit cell, the parameters a, b, g and
h are found by minimizing certain objective functions. Similarly to Chapter 3, objective
functions incorporating the the two-point matrix probability function Smm, matrix lineal

3 The index f in the bundle characteristic function is used to maintain the consistency with notation
used in Chapter 2 and to distinguish the index from the bundle height b, see Fig. 5.1.
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path function Lm or their combination are considered,

FS(x) =
imax∑

i=−imax

jmax∑
j=−jmax

(
Smm(i, j)− Smm(i, j)

)2
, (5.16)

FL(x) =

Nd−1∑
i=0

N`(i)−1∑
j=0

(
Lm(i, j)− Lm(i, j)

)2
, (5.17)

FS+L(x) = FS(a, b, h, g) + FL(a, b, h, g) (5.18)

where, similarly to Section 3.1.1, x = {a, b, h, g}T is the vector of unknown dimensions
of the PUC, Smm and Lm are the values of Lm and Smm functions corresponding to
the target microstructure, parameters imax and jmax define the range of points, in which
Smm functions are matched, Nd denotes the number of rays of a sampling template and
N`(i) is the number of pixels of the i-th sampling ray, respectively. Then, the following
optimization problem is solved to determine the optimal parameters of a periodic unit
cell.

Optimal plain weave periodic unit cell. For a selected statistical descriptor
D ∈ {S, L, S + L} find the parameters of the PUC x such that

x ∈ Argmin
x∈B

FD(x), (P3)

where B denotes a set of admissible unit cell parameters,

B =
{
x ∈ R4 : Li ≤ xi ≤ Ui, i = 1, . . . , N

}
, (5.19)

where Li and Ui denote the lower and upper bounds on unit cell parameters, selected,
e.g., on the basis of image analysis.

The numerical experiments reported in [299] allow us to anticipate that the RASA al-
gorithm, described in Section 2.5, is fully capable of solving the optimization problem (P3).
The next section investigates this fact for selected objective functions.

5.1.3 Test examples

In this section, the performance and robustness of the selected global optimization method
is tested for a set of carefully chosen optimization problems. First, the ability of the al-
gorithm to determine the parameters of a periodic unit cell with known parameters is
investigated. Then, optimal unit cells are generated for artificial microstructures exhibit-
ing typical imperfections observed in micrographs of real composites.

Identification problem

To test the sensitivity of the optimization process, three different bitmaps with resolution
128 × 16, 256 × 32 and 512 × 64 pixels were constructed for a unit cell determined by
parameters a = 10, h = 3, g = b = 1. For each bitmap the optimization algorithm was run
20 times to minimize the influence of various random circumstances. The computation



Mesoscale modeling via periodic fields 87

h

a

b
g

(a) (b)

Figure 5.2: Smm-based objective function for bitmap resolution 128× 16 pixels, (a) a×h,
(b) b× g
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Figure 5.3: Smm-based objective function for bitmap resolution 256× 32 pixels, (a) a×h,
(b) b× g
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Figure 5.4: Smm-based objective function for bitmap resolution 512× 64 pixels, (a) a×h,
(b) b× g
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Figure 5.5: Examples of optimization progress for Smm-based objective function, (a)
bitmap resolution 128 × 16 pixels, (b) bitmap resolution 256 × 32 pixels, (c) bitmap
resolution 512× 64 pixels
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was terminated if the algorithm returned a value smaller than 10−6 or if the number of
objective function evaluations exceeded 50,000. The parameters of the RASA method
were selected according to the Table 3.2 with bounds set to 50% and 200% of the target
values. The Smm-based objective function was considered first. The matching range imin–
imax and jmin–jmax, introduced in Eq. (5.16), was set to comply with the dimension of a
unit cell. For each run, minimum and maximum values of searched geometric parameters
were recorded. The results of this experiment are listed in Tables 5.1 and 5.2. In addition,
Table 5.1 provides information on the average number of function calls and the average
time needed to complete the optimization run for individual bitmaps4. As expected, the
optimization process converged for every run, which again confirms the robustness of the
RASA algorithm. A typical convergence progress of the optimization method, showing
an average and the best individual in the population, is displayed, together with the PUC
evolution, in Figs. 5.5a–c.

Bitmap Success Number of evaluations Total time
resolution rate Min Avg Max [s]
128× 16 20 / 20 1,106 2,826 6,321 169
256× 32 20 / 20 2,336 3,542 5,320 1,016
512× 64 20 / 20 2,716 4,581 12,457 6,648

Table 5.1: Smm-based identification: Number of function evaluations

Resolution amin amax hmin hmax

128× 16 9.8442 10.1010 2.9961 3.0119
256× 32 9.9253 10.0217 2.9959 3.0020
512× 64 9.9726 10.0259 2.9986 3.0009

Resolution bmin bmax gmin gmax

128× 16 0.9924 1.0065 0.9688 1.1010
256× 32 0.9968 1.0002 0.9831 1.0141
512× 64 0.9988 1.0009 0.9917 1.0157

Table 5.2: Geometrical parameters of the PUC : Smm-based optimization

In general, recall Table 5.1, the number of required iterations as well as the time needed
for convergence depends on the bitmap resolution. As expected, with higher resolution
the computation process becomes more expensive as the range of an objective function
increases by an order of magnitude. Nevertheless, all considered bitmap resolutions, at
least for the present problem, provide comparable results in terms of accuracy of the
searched geometric characteristics.

Finally, to further demonstrate the problem complexity, the objective functions for
different bitmap resolutions are shown in Figs. 5.2–5.4. It is clearly visible that the

4 All tests were performed on a computer with Intel Celeron 700 MHz processor with 256MB RAM
under the Linux operating system. The C++ code was compiled by gcc 2.96 GNU complier with
-03 optimization switch. The library FFTW 2.1.3 [60] was called to compute the discrete Fourier
Transform.
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objective function for the lowest bitmap resolution is rather noisy; this effect is, however,
easily resolved by increasing the bitmap resolution to 256× 32 pixels. Another difficulty
comes from the fact that, similarly to Chapter 3, the objective function is piecewise
constant due to a finite resolution of a bitmap. Although this fact is not apparent from
Figs 5.2–5.4, plotted form a data interpolated on a regular grid, it can be easily deduced
from results shown in Table 5.2. Finally, landscapes of objective functions reveal that the
objective functions are substantially more sensitive to parameters h and b than to a and
g. This corresponds well with higher accuracy of identified parameters h and b, observed
in Table 5.2.

The similar numerical experiments were repeated for the FL and FS+L objective func-
tions for the bitmap resolution 256 × 32 pixels. Note that sampling templates with pa-
rameters TW = TH = H/2 and ∆W = ∆H = H/8 were used for the determination of the
lineal path function Lmm. The statistics of the obtained numerical parameters together
with the number of function calls and overall computational time are stored in Tables 5.3
and 5.4. Note that both optimization problems, being based on the Lm function, are about
ten times more time consuming. This again highlights the remarkable efficiency of the
FFTW library; note, however, that the situation is much better than for the microstru-
ctural analysis, where this ratio was even higher, see Table 3.3. Moreover, both objective
functions result in geometrical parameters determined with a precision comparable to the
Smm-based optimization. This suggests that the scatter of the geometrical parameters is
caused solely by the discretization of the microstructure not by the objective function or
the selected optimization method.

Descriptor Success Number of evaluations Total time
rate Min Avg Max [s]

Lm 20 / 20 3,059 5,842 9,295 12,592
Lm + Smm 20 / 20 1,196 4,909 30,699 11,804

Table 5.3: Lm and Lm + Smm-based identification: Number of function evaluations

Descriptor amin amax hmin hmax

Lm 9.9227 10.0407 2.9967 3.0020
Lm + Smm 9.9243 10.0196 2.9977 3.0023

Descriptor bmin bmax gmin gmax

Lm 0.9973 1.0005 0.9855 1.0143
Lm + Smm 0.9969 1.0009 0.9864 1.0139

Table 5.4: Geometrical parameters of the PUC : Lm-based optimization, combined opti-
mization

Finally, for the sake of completeness, examples of typical objective runs together with
the plot of objective functions are shown in Figs. 5.6–5.7.

To summarize this study, the presented results support the choice of the selected
optimization method; furthermore, the resolution of the bitmap 256 × 32 is sufficient to
obtain the search geometrical parameters with a reasonable precision.
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Figure 5.6: Lm-based objective function for bitmap resolution 256× 32 pixels, (a) a× h,
(b) b× g
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Figure 5.7: Examples of optimization progress for bitmap resolution 256× 32 pixels, (a)
Lm-based objective function, (b) (Smm + Lm)-based objective function

5.1.4 Mesostructures with typical tow misalignments

As a representative of digitized images of real-world multilayered plain weave composites
a set of three artificial bitmaps exhibiting various in-situ observed imperfections, reported
in [25, 128, 214, 294], was generated. In particular, the “samples” formed by two unit cells
with different layer and bundle heights (see Fig. 5.8b), two identical unit cells shifted by
a (see Fig. 5.8c) and by a/2 (see Fig. 5.8d) are considered in this work5. Note that in the
following text, the microstructure displayed in Fig. 5.8b is referred to as PUC #1, while
the unit cells displayed in Figs. 5.8c–d are denoted as PUC #2 and PUC #3, respectively.
Based on the results of the sensitivity analysis in the previous section, the PUC #1 was

5 The parameters of the bitmap 5.8b are a = 10, h = 3, b = g = 1 for the lower layer and a =
10, h = 4.5, b = 1.5, g = 1 for the upper one; the remaining bitmaps correspond to a unit cell with
a = 10, h = 3, b = g = 1.
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(a) (b)

(c) (d)

Figure 5.8: Artificial bitmaps of mesoscale geometry with typical tow misalignments,
(a) ideal stacking, (b) different layer heights, (c) layers shifted by a, (d) layers shifted by
a/2

discretized as a bitmap with the dimensions 256 × 92 pixels and the PUC #2–3 were
represented by bitmaps with resolution 256× 64 pixels.

For each artificial mesostructure bitmap, the statistically optimal periodic unit cell
based on Smm, Lm and Smm +Lm descriptors was found6. The target value for each opti-
mization problem was set to 10−6 and the maximum number of function evaluations was
restricted to 25,000. Each optimization problem was executed ten times to verify that the
global optimum was reached and to determine the scatter of geometrical parameters. The
resulting optimal values obtained for individual bitmaps are stored in Table 5.5. Note
that the identified parameters, similarly to the results of Section 3.1.3, differ quite sub-
stantially for individual statistical descriptors; the precision of the identified parameters,
however, appears to be slightly higher for combined reconstruction problem.

5.2 Numerical evaluation of the overall response

Geometrical parameters derived in the previous section can be introduced into the unit
cell model described in Section 5.1.1 to generate an equivalent periodic unit cell that
represents a real composite. Such a unit cell can be then used within the framework of
the finite element method-based homogenization to arrive at the desired approximation
of the effective material behavior. Although a variety of works devoted to this topic can
be found in the literature [30, 34, 43, 84, 194, 195, 230, 277, 278, 288, 290, to name
a few], the analysis of the mesoscopic periodic unit cell subjected to a distribution of
eigenstresses together with the stress-controlled homogenization has not been, to author’s
best knowledge, addressed yet.

5.2.1 Problem setting

To introduce the subject, consider a mesoscale PUC with the local coordinate systems
defined such that the local x1 axis x`

1 is aligned with the fiber direction. Hereafter,

6 The sampling templates with parameters identical to those considered in the previous section were
used for the computation of the lineal path function Lm.
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Periodic Unit Cell #1
Descriptor a h b g

Smm 10.235± 0.023 3.792± 0.002 1.250± 0.001 1.726± 0.012
Lm 10.316± 0.018 3.785± 0.003 1.252± 0.001 1.766± 0.016

Smm + Lm 10.098± 0.015 3.754± 0.000 1.249± 0.000 1.014± 0.005
Periodic Unit Cell #2

Descriptor a h b g
Smm 9.931± 0.017 2.964± 0.001 0.995± 0.001 0.990± 0.005
Lm 10.863± 0.023 2.956± 0.002 0.996± 0.001 1.013± 0.008

Smm + Lm 9.975± 0.004 2.964± 0.001 0.994± 0.001 0.988± 0.005
Periodic Unit Cell #3

Descriptor a h b g
Smm 11.171± 0.032 3.046± 0.001 0.996± 0.001 0.670± 0.012
Lm 8.351± 0.033 2.887± 0.003 0.964± 0.001 0.247± 0.012

Smm + Lm 10.841± 0.016 3.045± 0.001 0.998± 0.001 0.715± 0.007

Table 5.5: Geometrical parameters of mesoscale PUCs

following the introductory Chapter 1, this level of sophistication will be referred to as
mesoscale to make distinction from the evaluation of effective properties of individual
tows found from the analysis on microscale, considered in Chapter 3. Further suppose
that the PUC is subjected to a prescribed overall stress Σmeso. Following the discussion
in Section 3.2, the local displacement field umeso(x) on mesoscale admits the following
decomposition

umeso(x) = Emeso · x + u∗meso(x), (5.20)

where u∗meso(x) represents a periodic fluctuation of the local displacement field due to the
presence of heterogeneities and Emeso is the overall strain tensor. The local strain tensor
then assumes the form

εmeso(x) = Emeso + ε∗meso(x), (5.21)

where the fluctuating part ε∗meso(x) vanishes under volume averaging. The goal now
becomes the evaluation of local fields within the mesoscopic unit cell and then their
averaging to arrive at the searched macroscopic response. To proceed, we first write the
principle of virtual work (Hill’s lemma) in the form

δEmeso : Σmeso = 〈δεmeso(x) : σmeso(x)〉 =
〈
δε`

meso(x) : σ`
meso(x)

〉
=

〈(
δE`

meso + δε`
meso(x)

)
: σ`

meso(x)
〉
, (5.22)

where 〈·〉 now denotes averaging with respect to the mesoscopic PUC Ymeso. The stress
field written in the local coordinate system then reads

σ`
meso(x) = L`

meso(x) :
(
E`

meso + ε∗`meso(x)
)

+ λ`
meso(x). (5.23)

Relating the strain tensors in local and global coordinate systems by well-known relations
E`

meso = Tε : Emeso, ε∗`meso = Tε : ε∗meso, see Section A.1.1, and inserting Eq. (5.23) into
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Eq. (5.22) yields the stationarity conditions of the given problem, i.e., the following system

δEmeso : Σmeso = δEmeso :
〈
Tε(x) :

[
L`

meso(x) : Tε(x) : (Emeso + ε∗meso(x))

+ λ`
meso(x)

]〉
, (5.24)

0 =
〈
δε∗meso(x) : Tε(x) :

[
L`

meso(x) : Tε(x) : (Emeso + ε∗meso(x))

+ λ`
meso(x)

]〉
, (5.25)

has to be satisfied for all kinematically admissible variations δEmeso and δε∗meso.

5.2.2 Discretization

To obtain an approximate solution of the above system of equations, the finite element
method discretization is again employed. We start from decomposing the mesoscale pe-
riodic unit cell Ymeso into Ne disjoint elements Ye with the discretization respecting the
interfaces between individual tows and the matrix phase. Employing the engineering
notation introduced in Appendix A, the approximation of the fluctuating part of the
displacement field u∗meso, written in the global coordinate system, yields

{u∗meso(x)} = [N(x)] {rmeso}, (5.26)

where [N] represents, as usual, the matrix of shape functions for a given partition of the
unit cell7 and {rmeso} is the vector of unknown degrees of freedom. The corresponding
approximation of the strain field is then provided by

{εmeso(x)} = {Emeso}+ [B(x)] {rmeso}, (5.27)

where [B] is the strain-displacement matrix. Introducing Eq. (5.27) into Eq. (5.22) gives,
for any kinematically admissible strains {δε∗meso} = [B] {δrmeso} and {δEmeso}, the associ-
ated system of linear equations in the form[

K11 K12

K21 K22

]{
Emeso

rmeso

}
=

{
Σmeso + f1

f2

}
. (5.28)

The individual stiffness matrices and vectors of generalized nodal forces are obtained by
the assembly of contributions for individual elements,

[K11] =
Ne

A
e=1

[K11,e] , where [K11,e] =
1

|Ymeso|

∫
Ye

[Tε,e]
T
[
L`

meso,e

]
dYe, (5.29)

[K21]
T = [K12] =

Ne

A
e=1

[K12,e] , where [K12,e] =
1

|Ymeso|

∫
Ye

[Tε,e]
T
[
L`

meso,e

] [
B̂e

]
dYe,

[K22] =
Ne

A
e=1

[K22,e] , where [K22,e] =
1

|Ymeso|

∫
Ye

[
B̂e

]
T
[
L`

meso,e

] [
B̂e

]
dYe,

{f1} =
Ne

A
e=1
{f1,e}, where {f1,e} =

−1

|Ymeso|

∫
Ye

[Tε,e]
T{λ`

meso,e} dYe,

{f2} =
Ne

A
e=1
{f2,e}, where {f2,e} =

−1

|Ymeso|

∫
Ye

[
B̂e

]
T{λ`

meso,e} dYe,

7 Linear tetrahedral elements are used in this study; this choice of elements is consistent with the
piecewise linear approximations of the displacement field.
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where the “rotated” displacement-strain matrix
[
B̂e

]
is defined by the relation

[
B̂e

]
=

[Tε,e] [Be]. The local-global transformation is parametrized by three Euler angles ψ, ϑ and
ϕ, see Section A.1.1, based on relations (5.10)8. Finally, observe that for the case of strain
controlled homogenization, the system of equations (5.29)–(5.30) reduces to

[K22] {rmeso} = − [K21] {Emeso}+ {f2}. (5.30)

5.2.3 Mesh generation

An important step of the mesoscale modeling is preparation of a 3D mesh of warp and
fill bundles and matrix phase complying with the requirements of mesh periodicity. This
task is far from being trivial; see, e.g., recent works [118, 119, 277] addressing this issue9.
In this work, the ideas of matched mesh generation, proposed in [277], are implemented
to the automated mesh generator program T3D [219]10.

In the past, a wide class of algorithms for generation of triangular and tetrahedral
meshes has been established, among which three basic strategies–the tree based approach,
the Advancing Front Technique and the Delaunay triangulation–have proven particularly
successful (see, e.g., [220] for an exhaustive review of various methods).

The present code employs the Advancing Front technique to generate high quality
unstructured 3D meshes. First, the geometry of the PUC is introduced: the model is
described by a boundary representation consisting of vertices, curves, surfaces, patches
and regions. Topologically, each region is formed by a set of non self-intersecting boundary
surfaces and patches, each of which is bounded by a set of curves. Each curve is determined
by two end vertices and the control polygon, if appropriate. Note that each surface is
assumed to be surrounded by exactly four boundary curves. The rational Bezier entities
are used to describe curves and surfaces, while a patch is planar entity bounded by a set
of planar curves. Then, to enforce the periodicity of the microstructure, the curve, surface
and patch entities corresponding to an opposite face of the PUC are tagged as control or
subordinate and pointers to control entity are assigned for the subordinate ones. Next, in
order to control the element size gradation and to implement the spatial localization, an
octree is built around the unit cell to be discretized.

The mesh generation then proceeds in a hierarchical manner. First, the model vertices
are discretized. Then curves are segmented using the mass curve of the required element
density as described in [220]. If a curve to be discretized is tagged as subordinate, segments
from the control curve are simply copied to the current entity. The two-dimensional
Advancing Front technique is then used to triangulate surfaces and patches. Again, if
an entity to be discretized is tagged as subordinate, the surface or patch mesh from the
control entity is directly copied to the processed entity. Finally, the individual regions are
meshed using the three-dimensional Advancing Front algorithm. At this stage of mesh
generation, the boundary entities of each region are already discretized consistently with

8 In the present implementation, the center of gravity of each element was used to determine the values
of Euler angles, which are supposed to be constant on a given element.
9 Note that there exist alternative approaches for enforcing the periodicity of the fluctuating displace-
ment field; see Section 3.2.4 for more detailed discussion and Section 5.3.2 for a particular example.

10 This code was developed by Dr. D. Rypl from the department of Structural Mechanics, Faculty of
Civil Engineering. I would like to express my thanks and gratitude to Dr. Rypl for his numerous
suggestions and inspiring discussion on the topic of this section.



Mesoscale modeling via periodic fields 96

respect to the unit cell periodicity. Further discussion together with detailed description
of individual steps of the T3D program can be found in monograph [220]. Examples of
tetrahedral meshes of a plain-weave unit cell generated by the described algorithm are
displayed in Figs. 5.9 and 5.11.

(a) (b)

Figure 5.9: Mesoscale finite element meshes

5.2.4 Numerical examples

We start from the sensitivity study of the overall elastic properties with respect to the
mesh size. To this end, the sequence of finite element meshes corresponding to decreasing
mesh size was generated by the algorithm described in the previous section. The elastic
properties of the matrix and the bundle phases were taken from Section 3.2.5. The
resulting coefficients of the homogenized stiffness matrix for the unit cell with parameters
a = 10, h = 3 and g = b = 1 together with the memory requirements appear in Table 5.6.
The presented results indicate that the discretization with the default mesh size equal
to 1.0 is sufficient to deliver the effective elastic properties with a reasonable precision;
therefore, this mesh size is used in all the following analyses. Finally, the distribution of
fluctuating displacement u∗meso within the periodic unit cell for various loading cases is
plotted in Fig. 5.10.

Mesh Lfem
11 Lfem

12 Lfem
33 Lfem

44 Lfem
66 cf Total Memory

size [GPa] [GPa] [GPa] [GPa] [GPa] DOFs [kB]
2.5 26.537 7.503 11.385 2.259 2.942 0.3549 1,008 1,742
2.0 26.501 7.494 11.379 2.262 2.954 0.3601 1,512 3,073
1.5 26.243 7.519 11.374 2.264 2.962 0.3648 2,595 6,977
1.0 25.250 7.494 11.370 2.265 2.966 0.3678 5,712 22,412
0.75 25.234 7.494 11.369 2.264 2.967 0.3690 14,304 111,829

Table 5.6: Comparison of the effective mesoscale stiffness matrix components for different
mesh sizes

As the next step, the effect of scatter of individual identified parameters is addressed.
The minimum and maximum dimensions were taken from the Smm-based identification
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(a) E11 = 1

(b) E33 = 1

(c) E12 = 1

(d) E23 = 1

Figure 5.10: Mesoscale fluctuating displacement u∗meso
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problem for the bitmap dimensions 256× 32, see Table 5.2. The results stored in the Ta-
ble 5.7 show that the difference in effective elastic moduli due to uncertainty in mesoscale
PUC parameters is approximately comparable to the discretization error observed in Ta-
ble 5.6. Moreover, the deviation of the Lfem

11 entry can be attributed to a relatively large
difference in the bundle volume fraction for the analyzed unit cells.

Dimensions Lfem
11 Lfem

12 Lfem
33 Lfem

44 Lfem
66 cf

[GPa] [GPa] [GPa] [GPa] [GPa]
Minimal 25.247 7.496 11.371 2.264 2.965 0.3674
Maximal 25.217 7.508 11.384 2.247 2.922 0.3554

Table 5.7: Effects of uncertainties in mesoscale PUC dimensions

Finally, we present the comparison of effective elastic properties for artificial bitmaps
and corresponding statistically optimized unit cells obtained in Section 5.1.4. The finite
element meshes corresponding to the artificial mesostructure appear in Fig. 5.1111. , while
the effective elastic properties of the target microstructure and the statistically optimized
unit cells are stored in Table 5.8.

Periodic Unit Cell #1
Descriptor Lfem

11 Lfem
12 Lfem

33 Lfem
44 Lfem

66 cf
[GPa] [GPa] [GPa] [GPa] [GPa]

Smm 21.100 7.499 11.401 2.265 2.868 0.3386
Lm 22.698 7.503 11.410 2.235 2.842 0.3312
Smm + Lm 23.334 7.490 11.383 2.255 2.925 0.3567
Target 23.324 7.453 11.384 2.269 2.963 0.3678

Periodic Unit Cell #2
Descriptor Lfem

11 Lfem
12 Lfem

33 Lfem
44 Lfem

66 cf
[GPa] [GPa] [GPa] [GPa] [GPa]

Smm 25.341 7.500 11.375 2.257 2.947 0.3635
Lm 26.309 7.494 11.372 2.259 2.959 0.3671
Smm + Lm 25.121 7.495 11.376 2.256 2.956 0.3629
Target 24.786 7.467 11.370 2.266 2.965 0.3678

Periodic Unit Cell #3
Descriptor Lfem

11 Lfem
12 Lfem

33 Lfem
44 Lfem

66 cf
[GPa] [GPa] [GPa] [GPa] [GPa]

Smm 27.629 7.471 11.362 2.268 2.997 0.3752
Lm 27.464 7.393 11.349 2.279 3.027 0.3872
Smm + Lm 27.095 7.473 11.371 2.258 2.966 0.3678
Target 24.694 7.416 11.374 2.273 2.972 0.3670

Table 5.8: Effective properties of statistically optimized mesoscale PUCs

Evidently, the best correspondence between the artificial micrographs and the periodic

11 Note that for mesh generation, the unit cells were shifted by a/2 compared to bitmaps displayed in
Fig. 5.8.
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unit cell was reached for the PUC #1 microstructure where the optimization procedure
predicts the in-plane properties with approximately the same error as the one resulting
from the discretization. Note that analogously to Section 3.1.3, the combined recon-
struction procedure yields the best results. The periodic unit cell based on parameters
identified for PUC #2 correctly predicts the bundle volume fraction; it does not, however,
take into account the different inclination of tows in individual layers which results in a
slight overestimation of Lfem

11 modulus. Note that its value for combined reconstruction
is, however, closer to the “correct” one that for the standard unit cell. The most severe
differences can be observed for the PUC #3 microstructure. As follows from Table 5.5, all
the optimized unit cell exhibit substantially smaller value of gap between individual tows
g to accommodate the layer shift present in the target micrograph, which leads to overes-
timating of the bundle volume fraction cf resulting in a higher value in-plane component
Lfem

11.
The obtained results allow us to conclude that the proposed procedure can be efficiently

used for multilayered composites with possibly varying layers heights provided that the
relative shift of individual layers is not very large or approximately equal to the unit cell
half-width. In the opposite case, it appears to be necessary to formulate the optimized
unit cell in terms of at least two-layered composite, too. Note, however, that the difference
of cross-sections corresponding to planes x = ±a and y = ±a, see Fig. 5.11c, calls for
microstructural information supplied in the form of bitmaps taken from several location
of a composite in two orthogonal directions rather than for only one bitmap considered in
this work. A more complex three-dimensional periodic unit cell also inevitably leads to a
substantial increase of computational demands, which somehow limits its applicability to
real-world problems.

5.3 Prestress analysis on mesoscale

The purpose of this section is to address, in the present modeling framework, the effect of
initial fiber prestress on the macroscopic response of 6× 6 braided weave composite, the
basic building block of the woven composite tubes [283, 284]. Here, we limit our attention
to a two-scale problem with the loading conditions applied on mesoscale. The attention
is given to the quantification of the influence of specific arrangement of reinforcements on
the overall response derived on mesoscale.

5.3.1 Geometrical model

For modeling purposes we limit our attention to a two-ply composite tube. Depending on
winding speed and orientation the number of tows within periodically repeating regions
may vary. In our particular case, the mesoscale unit cell consists of two plies where each ply
contains six tows. Overall properties of this mixture are found from the homogenization
procedure carried out on the microscale, see Chapters 2 and 3. All six tows are aligned
along the same direction, but they interlace through individual plies thus creating a typical
woven structure of the composite. This is shown schematically in Fig. 5.12a.

The shape of the tow cross-section is derived from images of the real composite struc-
ture. With the help of the LUCIE image analyzer such a micrograph can be transformed
into a binary image and further analyzed to provide all geometrical parameters to build
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(a)

(b)

(c)

Figure 5.11: Mesoscale meshes, (a) PUC #1, (b) PUC #2, (c) PUC #3

x

y
48.240

(a) (b)

Figure 5.12: Braided weave composite: (a) Weave layup, (b) Global coordinate system
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an idealized geometrical model. The microscopic images of a real tube suggest that every
tow is impregnated by the polymer matrix. The interface layer between the two adjacent
tows is approximately 0.02 mm thick. The same thickness is considered between the two
tows, which are parallel to each other and lay in the same ply. Due to interweaving the
tow cross-section varies along the tow middle-curve. Linear interpolation is used in the
transition zone to reflect this phenomenon.

The geometrical model derived from this data, however, is not very suitable for com-
putational modeling using the finite element method. The main drawback is a very thin
interface layer. Its discretization inevitably results in very small elements spread over
a large region of the unit cell thus leading to enormous computational effort, but not
substantially increasing the accuracy of the numerical model. Therefore, in order to ar-
rive at a feasible numerical model, some action must be taken. A suitable method of
attack appears in replacing the interface layer by contact elements with zero thickness
and appropriate interfacial material properties.

5.3.2 Periodic boundary conditions

Another complication is caused by the fact that, due to a complexity of the periodic unit
cell, it appears to be prohibitively difficult to generate the finite element mesh respecting
the periodic boundary conditions. Therefore, a simple penalty-based method is used to
prescribe the periodic boundary conditions. To that end, the displacements of a given
node, referred to subordinate, on one face of the unit cell are defined as a linear function
of the displacement of specific control nodes on the opposite face of the unit cell12. This
relation can be written as

{rmeso,s} = [P] {rmeso,c}, (5.31)

where the rmeso,s and rmeso,c denote nodal unknowns corresponding to nodes located on
opposite faces of the PUC and [P] is the matrix containing the weights corresponding to
given nodes (values of shape functions of the element face, which contains the projection
of a node on the opposite unit cell face).

To incorporate the periodicity condition into the problem formulation, we order the
degrees of freedom in such a way that the vector of unknown nodal fluctuating displace-
ments can be written as

{rmeso} =


rmeso,i

rmeso,s

rmeso,c

 , (5.32)

where rmeso,i denote the internal degrees of freedom. The discrete form of periodicity
condition than can be simply written as

{0} = [0, I,−P] {rmeso} = [G] {rmeso}. (5.33)

To arrive at the system of equations corresponding to Eq. (5.28), consider the mini-

12 Here, the linearity of the nodal basis function is employed.
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mization of the following quadratic function

Πρ({Emeso}, {rmeso}) =
1

2

(
{Emeso}T [K11] {E}+ {rmeso}T [K22] {rmeso}

)
+ {Emeso}T [K12] {rmeso}+ {Emeso}T ({Σ}meso + {f1}) + {rmeso}T{f2}
+

ρ

2
{rmeso}T [G] T [G] {rmeso}, (5.34)

where the last term was introduced to account for the periodicity of the fluctuating fields
rmeso, see Eq. (5.33). The results of standard penalty theory (see, e.g., [213, and references
herein]) ensure that the periodicity constraint is satisfied asymptotically as ρ → ∞. In
practical computations, the value of ρ is selected as large as possible while keeping the
parameter low enough to minimize the effect of round-off errors13.

Finally, it can be easily seen that the system of linear equations corresponding to
the stationarity conditions of the penalized formulation yields the following system of
equations [

K11 K12

K21 K22 + ρ [G] T [G]

]{
Emeso

rmeso

}
=

{
Σmeso + f1

f2

}
. (5.35)

5.3.3 Numerical results

This section demonstrates two possible outputs of the aforementioned homogenization
procedure. The first example provides effective elastic properties of the woven composite
material. The second example deals with the analysis of failure behavior of a given
composite system and its dependence on a fiber prestress.

Homogenized properties

To determine coefficients of the effective stiffness matrix, the periodic unit cell is loaded,
in turn, by each of six components of {Emeso}, while the other components vanish. The
volume averages of the stress tensor, transformed into the global coordinate system, then
furnish the individual columns of

[
Lfem

]
.

Material parameters of individual bundles were taken from Table 3.5 with out-of-plane
components of the effective stiffness tensor, which are not provided by the previous 2D
analysis, estimated by the Mori-Tanaka method [17]. Resulting values of individual com-
ponents of the material stiffness matrix are stored in Table 5.9. The selected coordinate
system is evident from Fig. 5.12b. The effective material is fully anisotropic resulting
from complicated geometrical arrangement of fiber tows. Moreover, the results indicate
strong coupling between in-plane shear and normal components (entries L16 and L26),
which must be taken into account in the design and analysis of such composite systems.

Failure behavior analysis

To obtain a qualitative description of failure behavior of the present composite system,
we constructed failure surfaces for a bi-axial loading specified in terms of overall in-plane
stresses. To this end, the material system is loaded by a certain combination of two overall
stresses. Then, this loading is proportionally increased until the Hill failure criterion, see

13 The value ρ = 1010 was found to comply with these conditions for the present study.
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Stiffness matrix entry Bundle Effective
L11 176.8 69.75
L22 10.74 81.83
L33 10.72 9.085
L12 6.897 23.64
L13 6.897 5.630
L23 6.319 5.684
L44 2.216 2.903
L55 4.861 3.009
L66 4.861 22.18
L16 – 28.03
L26 – 27.16

Table 5.9: Material properties of mesoscale unit cell [GPa]

Eq. (A.59), is reached at least at one material (integration) point. The resulting stress
values then define one vertex of a failure surface. Successive application of this procedure
for appropriate load combinations then yields the approximation of a failure surface. The
material parameters, taken from [279], considered in the present failure criterion are shown
in Table 5.10.

Y11 Y22 Y33 Y12 Y13 Y23

56.6 56.6 2342 48.7 48.7 48.7

Table 5.10: Bundle strength properties [MPa]

It was demonstrated in [56, 269] that fiber prestress can substantially influence inelastic
and failure behavior of unidirectional fibrous laminates. To extend this study to the
current material system, consider a uniform fiber prestress λ`

33,f introduced in the fiber
in the direction of its axis14. The magnitude of prestress on the level of fiber tow, λmeso,
follows from Hashin-Shtrikman variational principles, Eq. (4.31).

When introduced within the context of failure analysis, the presence of fiber prestress
just alters the original shape of the resulting failure surface. Results of this computa-
tion are shown in Figs. 5.13 and 5.14. Note that each failure surface in Fig. 5.13 was
approximated by a polygon with 64 vertices while the surface presented in Fig. 5.14 was
constructed from 4096 values.

The results show that the overall response of the braided composite is strongly an-
isotropic. Obviously, the resistance of the composite attains its maximum for the com-
bination of tensile and compressive loads, when favorable stress distribution causes large
stresses in the axial directions of two bundle systems, where the bundle strength is very
high (see Table 5.9). The effect of fiber prestress seems to be rather negligible for the
selected failure criterion and material system. The same, however, might not be true for

14 Recall that the local coordinate system is selected such that the local x`
3 axis is aligned with the fiber

direction.
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Figure 5.14: Failure envelope in Σmeso,11 × Σmeso,22 × Σmeso,12 stress space

more detailed failure laws, which might include nonlinearity at the contact surfaces of
individual tows or within the fiber tow itself.



Chapter 6

CONCLUSIONS AND FUTURE WORK

The aim of this chapter is to briefly summarize the major results obtained in the
present thesis and to comment and compare the related work found in literature not
explicitly mentioned in the previous text. Moreover, the possible extensions and directions
of further research are indicated.

A number of topics related to determination of the effective behavior of composite
materials with disordered microstructure is addressed in this thesis. Two reliable and
efficient approaches are introduced in the present work. Although different at their the-
oretical formulation, both approaches are closely tied to the same statistical descriptors
generally used to quantify the morphology of random microstructures. The first approach
follows well-established procedures which incorporate various periodic unit cell models
combined with the finite element method. On the microscale level, the complexity of real
microstructures is reflected in more complicated unit cells having larger number of par-
ticles. The required number of reinforcements and their arrangement is determined such
that the macroscopic response of a unit cell is identical to the behavior of a real composite.
A simple and intuitive approach based on microstructural statistics is proposed to derive
such periodic unit cells. The conceptually similar methodology is used on the mesoscale
level for definition of the statistically optimal periodic unit cell for plain weave compos-
ites. The second approach is based on extended Hashin-Shtrikman variational principles,
which directly incorporate two-point probability functions into the problem formulation.

The literature overview in Chapter 1 summarizes previous research and trends in the
fields of the Representative Volume Element definition, modeling and quantification of
microstructural morphology, global stochastic optimization methods and numerical as
well as analytical modeling on micro and mesoscale levels.

The stepping stone in the present approach is the knowledge of either two-point prob-
ability or lineal path functions for digitized media. Details regarding these descriptors are
given in Chapter 2 together with methods for their numerical evaluation with emphasis
put on possible anisotropy of the microstructural descriptors. In addition, this chap-
ter describes series of tests addressing the validity of statistical isotropy and ergodicity
assumptions suggested for the unidirectional graphite fiber-reinforced composite impreg-
nated by the polymer matrix. Finally, the stochastic optimization algorithm RASA,
based on combination of the Parallel Simulated Annealing, the Differential Evolution
method and real-encoded Genetic Algorithms, is introduced. The obvious disadvantage
of this algorithm is a large number of parameters of this method, which can eventually
lead to a tedious and time-consuming tuning procedure. This restriction, however, does
not seem to be important in the current work as all optimization problems encountered
in this thesis were successfully solved using identical parameters setting displayed in Ta-
ble 3.2. Although most of the material presented in Chapter 2 is not very new, see,
e.g., [19, 255, 257], such a detailed and self-contained treatment including the description
of algorithms for numerical evaluation of the statistical descriptors cannot be easily found
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in the literature. Moreover, the performance of the RASA algorithm was also indepen-
dently demonstrated by a successful application of this algorithm to several problems of
Civil and Geotechnical Engineering, see [114, 132].

Chapter 3 outlines generation of optimal unit cells for fiber reinforced composite mate-
rials by matching the material statistics of both the unit cell and real material in terms of
two-point probability function, lineal path function or a combination of both. Note that
other systems such as ceramic or metal matrix systems may also benefit from the present
work. The resulting optimization problem is divided into two separate sub-problems
and each of them solved by an appropriate optimization procedure. The finite element
discretization of the unit cell problem together with the mesh generation procedure are
implemented. Finally, the applicability of the present approach is confirmed by evaluating
effective thermoelastic system from both the small period unit cells (five to ten fibers unit
cells) and considerably larger unit cells having of two orders of magnitude more particles
(three to five hundred fibers). An excellent match is found. These results are further
extended to linear and non-linear viscoelastic response of random composites for both
the overall stress and overall strain loading cases. Note that the dimensions of minimal
periodic unit cells (approximately 4 fiber diameters) correspond well with the analytical
results of Drugan and Willis [49] and Drugan [48].

The Hashin-Shtrikman variational principles are the main topic of Chapter 4. Both
the displacement and traction based formulations are revisited in conjunction with ran-
dom composites and extended to account for the presence of initial stresses or strains. An
efficient numerical procedure based on the FFT which directly exploits digitized images of
real microstructures is implemented. Fourier transform applied when solving the resulting
integral equations is rather advantageous as it allows an arbitrary choice of the reference
medium so that often encountered anisotropy of individual phases creates no obstacles
in the solution procedure. When compared to the unit cell technique, this method is
more efficient and thus preferable when evaluating the macroscopic elastic and linearly
viscoelastic response of real composites. For the nonlinearly viscoelastic materials, how-
ever, the difference between the finite element modeling and Hashin-Shtrikman variational
principles becomes more pronounced. This agrees well with similar results obtained for,
e.g., the Mori-Tanaka method by Lagoudas et al. [139] and for the transformation field
analysis by Dvorak et al. [54]. The present formulation of the Hashin-Shtrikman varia-
tional principles employs the ideas of Willis [286] and Drugan and Willis [49]; the only
work somehow related to numerical application of Hashin-Shtrikman variational princi-
ples to the analysis of real-world materials I am aware of is Accrosi and Nemat-Nasser [4];
it is, however, restricted only to very special artificial microstructures and isotropic con-
stituents. Moreover, such a systematic comparison of Hashin-Shtrikman and finite element
based modeling for non-isotropic composites has not been, to author’s best knowledge,
presented yet.

Statistically optimal unit cells for plain-weave fabric composites derived on basis of the
principles set for unidirectional fibrous composites are introduced in Chapter 5. The model
of Kuhn and Charalambides [135] is implemented to describe the geometry of a given
composite system. A number of numerical tests is executed to quantify the sensitivity
and precision of the optimal unit cell parameters with respect to a bitmap resolution
and the selected statistical descriptor. Subsequently, this methodology is applied to the
determination of the periodic unit cells corresponding to artificial micrographs based
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on various imperfections consistent with in-situ observations of real composite media.
Geometrical parameters derived from the proposed optimization procedure are then used
to generate the finite element meshes by the Advancing Front method-based code T3D.
The numerical homogenization based on the stress-controlled approach incorporating a
general eigenstress distribution is formulated and implemented. The quality of the unit
cells resulting from the optimization procedure is then addressed from the point of view of
effective elastic properties. The obtained results show the applicability and the limitation
of the proposed procedure: in particular, it turns out that this methodology is applicable
for multilayered composite systems with non-uniform layer heights but not very different
shift of individual layers or with layers shifted by unit cell half-width. In other cases,
however, it appears to be necessary to formulate the optimized unit cell in terms of at
least two-layered composite.

Finally, the application of the uncoupled modeling approach based on combination
of the Hashin-Shtrikman variational principles and the finite element analysis is demon-
strated for the study of the failure envelopes of woven composite tubes. The results
demonstrate the strong anisotropy of the overall response and the insensivity of the over-
all failure behavior with respect to the fiber prestress for the analyzed composite system.
The results and ideas presented in this chapter seem to be new; the significance of more
complex unit cell for simulation of overall response of woven composites has been recently
advocated by Jekabsons and Byström [115].

Although a variety of problems were addressed and solved in the present work, there
still remains several possible extensions. The first possible improvement is increasing
efficiency of the optimization procedure based on the lineal path function. This can be
accomplished either by more sophisticated implementation of the lineal path function eval-
uation and, in addition, as indicated by results presented in [298], the number of function
evaluations can be substantially reduced by implementing problem-dependent operators
in the RASA algorithm. The second refinement can be based on application non-linear
version of Hashin-Shtrikman variational principles [200] for estimation of the overall re-
sponse of composites with a nonlinearly viscoelastic matrix phase. Another interesting
topic is definition of a more complex mesoscale periodic unit cells which incorporates shift
of individual layers in x and y directions combined with fast solution strategies for effi-
cient analysis of multi-layered periodic unit cells. Finally, very interesting and challenging
topic is the derivation of Hashin-Shtrikman variational bounds and estimates, similar to
those introduced in Chapter 3, for plain-weave composite systems.
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tkaninou plátnové vazby [Determination of effective elastic properties of woven fabric
reinforced composites], Habilitation thesis, Technical University of Liberec, 2000.
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Appendix A

CONSTITUTIVE MODELS

The purpose of this chapter is to gather information related to various constitutive
models used throughout the text. In addition, explicit relations between tensorial and
engineering representation of different quantities are presented to complement the notation
introduced on page xiii. Although the majority of the presented material is well-known,
we hope that such a relatively systematic treatment will improve clarity of the present
work and highlight relation between individual models.

A.1 Vectorial representation of second-order tensors

Standard engineering representation of stress and strain tensors (see, e.g., [21, 24, 75]) is
employed throughout the text. Assuming the Cartesian coordinate system with axes x1,
x2 and x3, the symmetric second-order Cauchy stress tensor σ is then represented as a
6× 1 vector,

{σ} = {σ11, σ22, σ33, σ13, σ23, σ12} T, (A.1)

and the symmetric second-order tensor of small strains ε is written as a 6× 1 vector

{ε} = {ε11, ε22, ε33, 2ε13, 2ε23, 2ε12} T. (A.2)

The similar approach is used for polarization stresses τ and strains γ

{τ} = {τ11, τ22, τ33, τ13, τ23, τ12} T, (A.3)

{γ} = {γ11, γ22, γ33, 2γ13, 2γ23, 2γ12} T (A.4)

and for eigenstress λ and eigenstrain µ tensors

{λ} = {λ11, λ22, λ33, λ13, λ23, λ12} T, (A.5)

{µ} = {µ11, µ22, µ33, 2µ13, 2µ23, 2µ12} T. (A.6)

The inverse a−1
ij of a second-order tensor aij is given by the relation a−1

ik akj = δij, where
δ is Kronecker’s second-order unit tensor with vectorial representation {δ}

{δ} = {1, 1, 1, 0, 0, 0} T. (A.7)

The trace Tr a = akk of a second-order tensor aij can be written in vectorial representation
as

Tr {a} = {δ}T{a}, (A.8)

and the deviatoric part of a second-order tensor a, given by a′ij = aij − 1
3
δijakk, can be

obtained as

{a′} = {a} − 1

3
{δ}T{a}{δ}. (A.9)

Note for the sake of completeness that the deviatoric part of the stress tensor σ is denoted
as s ≡ σ′ and the deviatoric part of the strain tensor ε is denoted as e ≡ ε′.
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A.1.1 Global-local transformations

Vector transformations. Recall that the relation between vector {r`} in the local
coordinate system and the global coordinate system {rg} are provided in terms of trans-
formation matrix [T], {r`} = [T] {rg} [24, 97]. If the rotation is defined in terms of Euler’s
angles ψ, ϑ and ϕ, this matrix is provided by

[T] =

 cosϕ cosψ − sinϕ cosϑ sinψ cosϕ sinψ + sinϕ cosϑ cosψ sinϕ sinϑ
− sinϕ cosψ − cosϕ cosϑ sinψ − sinϕ sinψ + cosϕ cosϑ cosψ cosϕ sinϑ

sinϑ sinψ − sinϑ cosψ cosϑ

 .
(A.10)

Note that this parameterization corresponds to successive rotation of global coordinate
axes by angle ψ about the x3 axis, then by angle ϑ about the rotated x′1 axis and finally to
rotation about the transformed x′′3 axis by angle ϕ to obtain the local coordinate system
x`

1, x
`
2 and x`

3.

Stress transformations. The transformation of stresses from the local to the global
coordinate systems is provided by means of fourth-order tensor Tσ, σ` = Tσ : σg, with
Tσ defined as (Tσ)ijkl = TikTjl (see, e.g., [24, 97]). The matrix form of the tensor Tσ is
written as

[Tσ] =


T2

11 T2
12 T2

13 2T12T13 2T11T13 2T11T12

T2
21 T2

22 T2
23 2T22T23 2T21T23 2T21T22

T2
31 T2

32 T2
33 2T32T33 2T31T33 2T31T32

T31T21 T32T22 T33T23 T32T23+T33T22 T33T21+T31T23 T31T22+T32T21
T31T11 T32T12 T33T13 T32T13+T33T12 T33T11+T31T13 T32T11+T31T12
T21T11 T32T12 T23T13 T23T12+T22T13 T23T11+T21T13 T11T22+T21T12

 . (A.11)

Strain transformations. Similarly to the stress transformation, the strain in a local
coordinate system is provided by ε` = Tε : εg, where, in the tensorial notation, Tε = Tσ.
The matrix form of Tε, however, is different from Eq. (A.11),

[Tε] =


T2

11 T2
12 T2

13 T12T13 T11T13 T11T12

T2
21 T2

22 T2
23 T22T23 T21T23 T21T22

T2
31 T2

32 T2
33 T32T33 T31T33 T31T32

2T31T21 2T32T22 2T33T23 T32T23+T33T22 T33T21+T31T23 T31T22+T32T21
2T31T11 2T32T12 2T33T13 T32T13+T33T12 T33T11+T31T13 T32T11+T31T12
2T21T11 2T32T12 2T23T13 T23T12+T22T13 T23T11+T21T13 T11T22+T21T12

 . (A.12)

Finally, recall that the following useful relations hold for matrices [Tε] and [Tσ]

[Tε]
−1 = [Tσ] T, [Tσ]−1 = [Tε]

T. (A.13)

A.2 Linear elasticity

We start with the simplest material model of linear elasticity with general eigenstrains
and eigenstresses. In this context, the stress-strain relationship is given by [21, 50, 97, 174]

σ(x) = L(x) : ε(x) + λ(x), (A.14)
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where Lijkl is the fourth-order tensor material stiffness tensor. Thanks to symmetries
Lijkl = Lklij = Ljikl, the matrix representation of the tensor Lijkl is provided by

[L] =


L1111 L1122 L1133 L1123 L1113 L1112

L2211 L2222 L2233 L2223 L2213 L2212

L3311 L3322 L3333 L3323 L3313 L3312

L2311 L2322 L2333 L2323 L2313 L2312

L1311 L1322 L1333 L1323 L1313 L1312

L1211 L1222 L1233 L1223 L1213 L1212

 . (A.15)

The relation (A.14) then can be written in engineering notation as

{σ(x)} = [L(x)] {ε(x)}+ {λ(x)}. (A.16)

The elastic compliance tensor Mijkl is the inverse of the fourth-order tensor Lijkl given by
relation MijmnLmnkl = Iijkl, where Iijkl = 1

2
(δikδjl + δilδjk) is the fourth-order unit tensor.

The matrix representation of the tensor M is given by

[M] =


M1111 M1122 M1133 2M1123 2M1113 2M1112

M2211 M2222 M2233 2M2223 2M2213 2M2212

M3311 M3322 M3333 2M3323 2M3313 2M3312

2M2311 2M2322 2M2333 4M2323 4M2313 4M2312

2M1311 2M1322 2M1333 4M1323 4M1313 4M1312

2M1211 2M1222 2M1233 4M1223 4M1213 4M1212

 (A.17)

and the matrix form of a strain-stress relationship ε = M : σ + µ is then provided by

{ε(x)} = [M(x)] {σ(x)}+ {µ(x)}. (A.18)

The matrices [L] and [M] are mutual inverses, [L] [M] = [I]. Therefore, only the matrix
representation of stiffness tensor [L] is explicitly presented in the following text; the form
of the compliance matrix follows from [M] = [L]−1. Note that the number of independent
material parameters can be reduced either by accepting certain assumption about the
stress state in a body (see Section A.2.1) or employing symmetries of a material.

Thermally induced eigenstrains. For eigenstrains induced by temperature change
∆θ, the eigenstress tensor µ reads as

µ(x) = m(x)∆θ(x), (A.19)

where m stores the coefficients of thermal expansion. In the engineering notation, the
thermal expansion tensor can be written as 6× 1 vector

{m} = {α1, α2, α3, 0, 0, 0} T. (A.20)

It follows from Eq. (A.18) that the eigenstress vector {λ} assumes the form

{λ(x)} = − [L(x)] {µ(x)} = − [L(x)] {m(x)}∆θ. (A.21)
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Isotropic material. For isotropic material, the stiffness matrix is determined by two
independent constants. If the material constants are Young’s modulus E and Poisson’s
ratio ν, the stiffness matrix [L] can be expressed as 6× 6 matrix [21, 97, 161]

[L] =
E

(1 + ν)(1− 2ν)


1−ν ν ν 0 0 0

ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1

2
(1−2ν) 0 0

0 0 0 0 1
2
(1−2ν) 0

0 0 0 0 0 1
2
(1−2ν)

 . (A.22)

In case that the material constants are the bulk modulus K and the shear modulus
G, these relations change to [21, 97, 161]

[L] =


K + 4

3
G K − 2

3
G K − 2

3
G 0 0 0

K − 2
3
G K + 4

3
G K − 2

3
G 0 0 0

K − 2
3
G K − 2

3
G K + 4

3
G 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

 . (A.23)

Transversally isotropic material. In view of the assumptions of the generalized plane
strain discussed in Section A.2.1, the transversally isotropic material with x3 as the axis
of rotational symmetry is considered. Employing Hill’s notation [95], the stiffness tensor
L can be represented by the 6× 6 matrix in the form

[L] =


(k +m) (k −m) l 0 0 0
(k −m) (k +m) l 0 0 0

l l n 0 0 0
0 0 0 p 0 0
0 0 0 0 p 0
0 0 0 0 0 m

 . (A.24)

The parameters k,m, n, p and l are related to the material engineering constants EA, ET,
νA, GA and GT using the following relations,

k = −[1/GT − 4/ET + 4ν2
A/EA]−1, l = 2kνA,

n = EA + 4kν2
A = EA + l2/k, m = GT, p = GA.

(A.25)

A.2.1 Generalized plane strain

The generalized plane strain corresponds to idealization of stress and strain distribution
in unidirectional composites, which are characterized by the invariance under the trans-
lation along the axial direction x3 (see, e.g., [97, 161]). It is further assumed that the
material is orthotropic with the axial direction x3 identical to the direction of orthotropy.
Then, the out-of plane shear stresses vanish and the only non-zero components of the
strain and stress tensors are ε11, ε12, ε22, ε33 and σ11, σ12, σ22, σ33, respectively. Note that
due to assumed perfect bonding between individual phases the components ε33 and σ33

attain constant values. Thus, the stress tensor σ and strain tensor ε have a 4× 1 vector
representations,

{σ} = {σ11, σ22, σ12, σ33} T, {ε} = {ε11, ε22, 2ε12, ε33} T. (A.26)
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The representation of eigenstress, eigenstrain, polarization stress and strain tensors follow
the principles set by Eqs. (A.3)–(A.6). Finally, for the sake of completeness, the explicit
form of 4×4 stiffness matrices for material symmetries discussed in the three-dimensional
case are presented.

Isotropic material – (E, ν).

[L] =
E

(1 + ν)(1− 2ν)


1− ν ν 0 ν
ν 1− ν 0 ν
0 0 1

2
(1− 2ν) 0

ν ν 0 1− ν

 (A.27)

Isotropic material – (K,G).

[L] =


K + 4

3
G K − 2

3
G 0 K − 2

3
G

K − 2
3
G K + 4

3
G 0 K − 2

3
G

0 0 G 0
K − 2

3
G K − 2

3
G 0 K + 4

3
G

 (A.28)

Transversally isotropic material.

[L] =


(k +m) (k −m) 0 l
(k −m) (k +m) 0 l

0 0 m 0
l l 0 n

 (A.29)

Coefficients of thermal expansion. The tensor of thermal expansion coefficients {m}
for the generalized plane strain can be expressed in the form of 4× 1 vector

{m} = {α1, α2, 0, α3} T. (A.30)

A.3 Linear viscoelasticity

The traditional approach in linear viscoelasticity relies on the so-called correspondence
principle (see, e.g., [35, 126] and references therein), which can be also employed to relate
the overall viscoelastic properties of heterogenous media to its effective elastic proper-
ties (see, e.g., [88, 127, 141, 144, 181, 241, 293, to cite a few]. However, this procedure
generally needs a numerical inversion of the Laplace or Fourier transform of the viscoelas-
ticity solution, which introduces serious difficulties.

The presented approach avoids this complication by formulating the constitutive equa-
tions in the explicit incremental scheme that is derived by converting the integral equations
into a rate-type form and by subsequent integration under certain simplifying assump-
tions [13]. The resulting relations are simple to implement, naturally fit into the eigen-
stress/strain framework (Eqs. (A.16) and (A.18)) and can be easily extended to nonlinear
viscoelastic model described in Section A.4.1.
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For a smooth history of the applied stress σ(·), the one-dimensional stress response at
a time t is given by [21, 35, 126]

ε(t) = J(t, t0)σ(t0) +

∫ t

t0

J(t, τ)
dσ(τ)

dτ
dτ, (A.31)

where J(·, ·) is the creep compliance. Similarly, the strain response at a time t for a
smooth history of applied strain ε(·) is provided by

σ(t) = R(t, t0)ε(t0) +

∫ t

t0

R(t, τ)
dε(τ)

dτ
dτ, (A.32)

where R(·, ·) is the creep relaxation function.

A.3.1 Dirichlet series expansion

To formulate the constitutive equations for viscoelastic constituents in the differential
form, the degenerate Dirichlet kernels

J(t, τ) =
M∑

µ=1

1

Dµ(τ)
(1− exp [yµ(τ)− yµ(t)]) , (A.33)

R(t, τ) =
M∑

µ=1

Eµ(τ) exp [yµ(τ)− yµ(t)], (A.34)

where yµ(t) = (t/Θµ)qµ , are used to approximate the creep and relaxation functions J(t, τ)
and R(t, τ), respectively. Retardation times Θµ must satisfy certain rules necessary for
the success of calculation [13, 193] and the coefficient qµ is introduced in order to reduce
the number of terms of the Dirichlet expansions. Parameters Dµ and Eµ are usually
obtained by fitting the creep or relaxation functions via Eqs. (A.33) using the method of
least squares.

Recall that the compliance function of a linear viscoelastic material represents the
strain at time t due to a unit stress applied at time τ and kept constant, while the
relaxation function represents the stress at time t due to a unit strain applied at time τ
and held constant (compare with Eqs. (A.33) and (A.34)). Therefore, when written in
the form of Dirichlet series, these functions can be interpreted by representation provided
by the Kelvin and Maxwell chains, respectively (see Fig. A.1). For example, the Maxwell
chain model gives the local stress in the form

σ(x) =
M∑

µ=1

σµ(x), (A.35)

where σµ, called hidden stress, represents the stress in the µ-th Maxwell unit, which
satisfies the differential constitutive equation

dσµ(t)

dt
+ σµ(t)

dyµ(t)

dt
= Eµ(t)

dε(t)

dt
,

dyµ(t)

dt
=
Eµ(t)

ηµ(t)
, (A.36)

where Eµ(·) and yµ(·) are Young’s modulus and viscous resistance coefficients of the µ-
th unit, respectively. Similar equations can be formulated for the Kelvin model (see,
e.g., [13, 21, 35, 193] for more details).
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Figure A.1: Maxwell chain rheological model

A.3.2 Generalized Maxwell model

Numerical solution of the viscoelastic problem is based on dividing the time axis into equi-
sized intervals of length ∆ti. Suppose that at the beginning of the i-th interval 〈ti, ti+1〉,
the stresses σµ(ti), µ = 1, 2, . . . ,M , are known. Assuming that dyµ/ dt, dε/ dt and Eµ are
constant on a given interval with Eµ = Eµ(ti +∆ti/2), the incremental form of Eq. (A.36)
can be written as [13, 21, 193]

∆σ(ti) = Ê(ti)∆ε(ti) + ∆λ(ti), (A.37)

where the instantaneous Young’s modulus Ê(ti) and eigenstress increment ∆λ(ti) are
provided by

Ê(ti) =
M∑

µ=1

Êµ(ti) =
M∑

µ=1

Eµ(ti −∆ti/2)
1− exp (−∆yµ(ti))

∆yµ(ti)
, (A.38)

∆λ(ti) =
M∑

µ=1

∆λµ(ti) = −
M∑

µ=1

[1− exp (−∆yµ(ti))]σµ(ti). (A.39)

Finally, the stress σµ at the end of the given interval depends solely on the stresses σµ(ti)
through the relation

σµ(ti+1) = σµ(ti) exp (−∆yµ(ti)) +
Êµ(ti)

Ê(ti)
(∆σ(ti)−∆λ(ti)) . (A.40)

The above one-dimensional relations can be easily extended to general stress state
by assuming that the material is isotropic and Poisson’s ratio ν is the time-independent
constant. Then it suffices to replace the instantaneous Young’s modulus Ê(ti) by the

instantaneous material stiffness matrix [L(ti)] derived from time-dependent modulus Ê(ti)
and time-independent Poisson’s ratio ν by means of Eq. (A.22). Then, the incremental
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solution can be written in the form [13, 21, 193]

{∆σ(ti)} =
[
L(Ê(ti), ν)

]
{∆ε(ti)}+ {∆λ(ti)}, (A.41)

with Ê(ti) given by Eq. (A.38) and remaining terms attain the form

{∆λ(ti)} =
M∑

µ=1

{∆λµ(ti)} = −
M∑

µ=1

[1− exp (−∆yµ(ti))] {σµ(ti)}, (A.42)

{σµ(ti+)} = {σµ(ti)} exp (−∆yµ(ti)) +
Êµ(ti)

Ê(ti)
({∆σ(ti)} − {∆λ(ti)}) . (A.43)

A.4 Non-linear viscoelasticity

It is an experimentally confirmed fact that, to a good approximation, polymers show
negligible volume deformation during plastic flow. Combing the Eyring flow model [129]
for the plastic component of the shear strain rate

dep

dt
=

1

A
sinh

τ

τ0
, (A.44)

with the elastic shear strain rate dee/ dt yield the one-dimensional Leonov constitutive
model [142]

de

dt
=

dee

dt
+

dep

dt
=

dee

dt
+

τ

η( dep/ dt)
, (A.45)

where the shear-dependent viscosity η is provided by

η( dep/ dt) =
η0τ

τ0 sinh(τ/τ0)
= η0aσ(τ). (A.46)

In Eq. (A.44), A and τ0 are material parameters; aσ appearing in Eq. (A.46) is the
stress shift function with respect to the zero shear viscosity η0 (viscosity corresponding
to an elastic response). Clearly, the phenomenological representation of Eq. (A.45) is the
Maxwell model with the variable viscosity η.

To describe multi-dimensional behavior of the material, the generalized compressible
Leonov model, equivalent to the generalized Maxwell chain model, can be used [254, 270].
The viscosity term corresponding to the µ-th chain then can be written in the form

ηµ = η0,µaσ(τeq), (A.47)

where the equivalent shear stress τeq is provided by

τeq =

√
1

2
sijsij. (A.48)

Limiting our attention to the vicinity of the yield point and assuming small strains and
isotropic material, a set of constitutive equations defining the generalized compressible
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Leonov model can be written in the form

σm = 3K Tr ε, (A.49)

ds

dt
=

M∑
µ=1

2Gµ

(
de

dt
− dep

dt

)
, (A.50)

sµ = 2ηµ
dep

dt
= 2η0,µaσ(τeq)

dep

dt
, (A.51)

s =
M∑

µ=1

sµ, (A.52)

where σm = Tr σ/3 is the mean stress, K is the bulk modulus and Gµ is the shear modulus
of the µ-th unit.

A.4.1 Generalized Maxwell-like model

Following viscoelastic procedure introduced in Section A.3.2, an explicit incremental
scheme is used to integrate Eqs. (A.49)–(A.52). To that end, we again divide the time axis
into equisized intervals of length ∆t and assume that at the beginning of the i-th interval
the deviatoric stresses in individual chains sµ(ti), µ = 1, 2, . . . ,M , are known. Next, we
suppose that the functions Gµ = Gµ(ti + ∆ti/2) and ηµ = ηµ(ti + ∆ti/2) remain constant
on a given interval. Under these simplifying assumptions, the incremental form yields

{∆σ(ti)} =
[
L
(
K, Ĝ(ti)

)]
{∆ε(ti)}+ {∆λ(ti)}, (A.53)

where the material stiffness matrix is obtained from the time-dependent shear modulus
Ĝ(ti) and from the time-independent bulk modulus K, Eq. (A.23); the remaining param-
eters are as follows1

Ĝ(ti) =
M∑

µ=1

Ĝµ(ti) =
M∑

µ=1

ηµ(ti)

∆t

(
1− exp

(
−Gµ(ti)∆t

ηµ(ti)

))
, (A.54)

{∆λ(ti)} =
M∑

µ=1

{∆λµ(ti)} = −
M∑

µ=1

(
1− exp

(
−Gµ(ti)∆t

ηµ(ti)

))
{sµ(ti)}, (A.55)

{sµ(ti+)} = {sµ(ti)} exp

(
−Gµ(ti)∆t

ηµ(ti)

)
+

2ηµ(ti)

∆t

(
1− exp

(
−Gµ(ti)∆t

ηµ(ti)

))
[Q] {∆e(ti)}, (A.56)

ηµ(ti) = η0aσ (τeq({s(ti)})) , (A.57)

[Q] = diag

[
1, 1, 1,

1

2
,
1

2
,
1

2

]
. (A.58)

1 Note that setting setting qµ = 1 and Θµ = ηµ/Gµ in the Dirichlet series expansion (A.33) and (A.34),
the relations (A.53)–(A.58) basically follow from the linear viscoelastic model.
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A.5 Hill’s failure criterion

The Hill failure criterion is basically extension of the von Mises plasticity to general an-
isotropic materials in a multi-dimensional stress state. Assuming that coordinate system
is aligned along three principal axes of anisotropy, this criterion is provided by the rela-
tion (see, e.g., [80, 88, 92] and references therein),

A(σ22 − σ33)
2 +B(σ33 − σ11)

2 + C(σ11 − σ22)
2 + 2Dσ2

23 + 2Eσ2
13 + 2Fσ2

12 = 1, (A.59)

where the material constants A,B,C,D,E and F are defined as

2A =
1

Y 2
22

+
1

Y 2
33

− 1

Y 2
11

,

2B =
1

Y 2
33

+
1

Y 2
11

− 1

Y 2
22

,

2C =
1

Y 2
11

+
1

Y 2
22

− 1

Y 2
33

,

and

2D =
1

Y 2
23

, 2E =
1

Y 2
13

, 2F =
1

Y 2
12

.

Note that the values Yij stand for the strength of a material with respect to a uni-axial
stress state σij.



Appendix B

THE FOURIER TRANSFORM, FUNDAMENTAL
SOLUTIONS AND MICROSTRUCTURAL MATRICES

B.1 The Fourier transform

The d-dimensional Fourier transform of a function f(x) is defined as (see, e.g., [123, Part
8], [218, Chapter 9])

F (f(x)) = f̃(ξ) =

∫
V

f(x)eiξ·x dx, (B.1)

where “i” is the imaginary unit. The operator F is called the Fourier transform operator.
The inverse operator F−1 is obtained by changing the sign of i and normalizing by (2π)−d.
Hence, the inverse Fourier transform is given by

F−1
(
f̃(ξ)

)
= f(x) =

1

2πd

∫
V

f(ξ)e−iξ·x dξ. (B.2)

Simple algebra shows that the operator F satisfies the following equation

F−1 (F (f(x))) = f(x). (B.3)

Further, provided that function f(x) decays “sufficiently rapidly” to 0 for |x| → ∞ we
have, by Green’s theorem,(̃

∂f

∂xi

)
(ξ) =

∫
V

∂f

∂xi

eiξ·x dx = −iξi

∫
V

f(x)eiξ·x dx = −iξif̃(ξ). (B.4)

B.2 The discrete Fourier transform

The discrete Fourier Transform (DFT) often replaces its continuous counterpart when
analyzing discrete systems such as digitized images of real microstructures. The com-
plexity of their geometries usually calls for sampling large micrographs, recall Fig. 2.2.
The actual microstructure is then approximated by the measured segment periodically
extended outside the measured region. Such a representation invites an application of the
DFT to carry out Fourier analysis if needed. Clearly, the discrete Fourier representation
results in periodic representation in real space. Note that the spectrum of the discrete
real space is also periodic.

Without loss of generality we now limit our attention to a one-dimensional problem
and consider a discrete set of N points defined on the interval 0 ≤ n ≤ N − 1. Applying
a discrete version of the Fourier series this set is given by

x(n) =
1

N

N−1∑
k=0

ξ(k)e−i(2π/N)kn, (B.5)
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where the coefficients ξ(k) are provided by the Discrete Fourier Transform of x(n)

ξ(k) =
1

N

N−1∑
n=0

x(n)ei(2π/N)kn. (B.6)

Extension to cover 2D and 3D problems is rather straightforward. Further discussion on
this subject can be found in very readable form in, e.g., [28, 60, 203].

B.3 The convolution and correlation theorems

The convolution of two functions f and g is defined as∫
V

f(x− x′)g(x′) dx′.

The convolution theorem states that the transform of the convolution equals the product
of the transforms [123, 218]

F
(∫

V

f(x− x′)g(x′) dx′
)

= F (f(x))F (g(x)) . (B.7)

Similarly, using Eq. (B.2) gives

F−1

(∫
V

f̃(ξ − ξ′)g̃(ξ′) dξ′
)

= (2π)df(x)g(x), (B.8)

which implies that

F (f(x)g(x)) = (2π)−d

∫
V

f̃(ξ − ξ′)g̃(ξ′) dξ′. (B.9)

Finally, the Fourier transform of the correlation integral∫
V

f(x + x′)g(x′) dx′,

where g(x) is a real function is given by

F
(∫

V

f(x + x′)g(x′) dx′
)

= F (f(x))F (g(x)), (B.10)

where · means complex conjugate and should not be mistaken with the ensemble average
used before.

B.4 Fundamental solutions

Physically speaking, the displacement fundamental solution (u∗0)pi
1 represents the dis-

placement in the i direction at point x ∈ V due to a unit point force applied at a point

1 Note that index “0” is, in accordance with Chapter 4, used for denoting the homogeneous (reference)
medium. Further, in this section we heavily use the comma notation for derivatives and Einstein’s
summation convention with respect to repeated indices (see Notation on page xiii for more details).
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x′ in the direction p. For a homogeneous medium with the stiffness tensor L0, it can be
obtained from the solution of the Lamé equation (see, e.g, [21, 49, 131, 174])

(L0)ijkl(u
∗
0)pk,lj(x− x′) + δpiδ(x− x′) = 0, (B.11)

where δ(·) is the Dirac delta function. Similarly, the strain fundamental solution, provided
by

(ε∗0)pij =
1

2
((u∗0)pi,j + (u∗0)pj,i), (B.12)

then corresponds to the strains at a point x due to a unit point force applied at a point
x′ in the pth direction. A careful analysis reveals that this function can be used to express
the fluctuating part of the strain tensor ε′ as a function of polarization stress τ , (the
relation needed in Eq. (4.16))2

ε′pq(x
′) =

∫
V

(ε∗0)ijpq(x− x′) (τij(x)− 〈τij〉) dx, (B.13)

where the fourth order tensor (ε∗0)ijpq is obtained as

(ε∗0)ijkl(x) =
1

2
((ε∗0)ikl,j(x) + (ε∗0)jkl,i(x)) . (B.14)

Finally, the local strain thus follows from the superposition of oscillating part of strain ε′

and the uniform strain E

εpq(x
′) = Epq + ε′pq(x

′) = Epq +

∫
V

(ε∗0)ijpq(x− x′) (τij(x)− 〈τij〉) dx. (B.15)

B.5 The Fourier transform of tensors ε∗0 and σ∗0

In the previous section we introduced the fourth order tensor (ε∗0)ijkl related to the funda-
mental solution (u∗0)ij. Specific forms of these quantities for a homogeneous and isotropic
material and certain special cases of anisotropic materials can be found, e.g., in [21, 174].
Their Fourier transforms, however, needed for evaluation of matrices [Ars] and [Brs] in
Eqs. (4.26) and (4.51), deserve more attention.

First, consider the tensor (ε∗0)ijkl. Introducing Eq. (B.12) into Eq. (B.14) yields

(ε∗0)ijkl(x) =
1

4
((u∗0)ik,lj(x) + (u∗0)il,kj(x) + (u∗0)jk,li(x) + (u∗0)jl,ki(x)) . (B.16)

Hence, according to B.4, the Fourier transform of Eq. (B.16) can be written in the form

(̃ε∗0)ijkl(ξ) = −1

4

(
(̃u∗0)ik(ξ)ξlξj + (̃u∗0)il(ξ)ξkξj + (̃u∗0)jk(ξ)ξlξi + (̃u∗0)jl(ξ)ξkξi

)
. (B.17)

Similarly, the Fourier transform of Eq. (B.11) reads

−(L0)ijklξiξl(̃u∗0)jm(ξ) + δkm = 0, (B.18)

2 Loosely speaking, the term τij(x)− 〈τij〉 oscillates about zero and by virtue of St. Venant’s principle
the boundary terms due to this polarization stresses are insignificant except for a layer close to ∂V .
See, e.g., [134, 140, 285] and [271, Appendix A]) for more detailed discussion.
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so that
(̃u∗0)jk(ξ) = ((L0)ijklξiξl)

−1 . (B.19)

For a homogeneous and isotropic material the above equation assumes the form

(̃u∗0)jk(ξ) =
1

|ξ|2µ
δjk −

λ+ µ

µ(λ+ 2µ)

ξj
|ξ|2

ξk
|ξ|2

, (B.20)

where λ and µ are the Lamé parameters (see, e.g., [97, 174]). Finally, substituting
Eq (B.20) into Eq (B.17) gives the Fourier transform of the tensor (ε∗0)ijkl

(̃ε∗0)ijkl = − 1

|ξ|4µ

{
|ξ|2

4
(ξjξlδik + ξiξlδjk + ξjξkδil + ξiξkδjl)−

λ+ µ

µ(λ+ 2µ)
ξiξjξkξl

}
.

(B.21)
To derive the Fourier transform of the tensor (σ∗0)ijkl we begin with the constitutive

law of isotropic material given by

σij(x) = λul,l(x)δij + µ(ui,j(x) + uj,i(x)). (B.22)

The above equation can be used to show that

(σ∗0)ijkl(x) = λ(σ∗0)mkl,mδij + µ((σ∗0)ikl,j + (σ∗0)jkl,i), (B.23)

where
(σ∗0)ijk(x) = λ(u∗0)il,l(x)δjk + µ((u∗0)ij,k(x) + (u∗0)ik,j(x)). (B.24)

Fourier transforming of Eq. (B.24) then provides

(̃σ∗0)ijkl(ξ) = −iλ(̃σ∗0)mkl(ξ)ξmδij − iµ((̃σ∗0)ikl(ξ)ξj + (̃σ∗0)jkl(ξ)ξi), (B.25)

where the Fourier transform of (σ∗0)ijk is given by

(̃σ∗0)ijk(ξ) = −iλ(̃u∗0)il(ξ)ξlδjk − iµ((̃u∗0)ij(ξ)ξk + (̃u∗0)ik(ξ)ξj). (B.26)

Therefore, after substituting the above equation into Eq. (B.26) we arrive at

(̃σ∗0)ijkl(ξ) = −λ2(̃u∗0)mn(ξ)ξmξnδijδkl

−λµ
(
(̃u∗0)mk(ξ)ξlξmδij + (̃u∗0)ml(ξ)ξkξmδij + (̃u∗0)in(ξ)ξnξjδkl + (̃u∗0)jn(ξ)ξnξiδkl

)
−µ2

(
(̃u∗0)ik(ξ)ξlξj + (̃u∗0)il(ξ)ξkξj + (̃u∗0)jk(ξ)ξlξi + (̃u∗0)jl(ξ)ξkξi

)
. (B.27)

The last step requires substitution of Eq. (B.20) into Eq. (B.28). After some lengthy
algebra we finally get the desired results in the form

(̃σ∗0)ijkl(ξ) = − λµ

|ξ|2(λ+ 2µ)

{
2(ξiξjδkl + ξkξlδij)−

4(λ+ µ)

|ξ|2
ξiξjξkξl

+(λ+ 2µ)(ξkξjδil + ξlξkδij + ξkξiδjl + ξlξiδjk)

+
|ξ|2

λµ
δijδkl

}
. (B.28)
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For a general anisotropic solid one may start from Eq. (B.17) and write the tensor (̃σ∗0)ijkl

in the form
(̃σ∗0)ijkl = −(L0)ijpq (̃ε∗0)pqrs(L0)rskl. (B.29)

Also note that engineering form of tensors (̃ε∗0)ijkl and (̃σ∗0)ijkl for the generalized plane
strain assumptions (see Appendix A) are

[
ε̃∗0

]
=


(̃ε∗0)1111 (̃ε∗0)1122 2(̃ε∗0)1112 0

(̃ε∗0)1122 (̃ε∗0)2222 2(̃ε∗0)2212 0

2(̃ε∗0)1112 2(̃ε∗0)2212 4(̃ε∗0)1212 0
0 0 0 0

 , (B.30)

and [
σ̃∗0

]
= − [L0]

[
ε̃∗0

]
[L0] , (B.31)

where the last row and column in matrix
[
ε̃∗0

]
were augmented by zeros to comply with

the generalized plane strain assumption.

B.6 Evaluation of matrices [Ars] and [Brs]

Consider Eq. (4.26) to write the microstructure-dependent matrices [Ars] in the form

[Ars] =

∫
V

[ε∗0] (x− x′) (Srs(x− x′)− crcs) dx′

=

∫
V

[ε∗0] (x− x′)S ′rs(x− x′) dx′ =

∫
V

[ε∗0] (x)S ′rs(x) dx, (B.32)

where S ′rs denotes the fluctuating part of Srs under the no-long range orders hypoth-
esis (2.18). Next, using Eq. (B.1), observe that the preceding formula can be written
as

[Ars] =

∫
V

[ε∗0] (x)S ′rs(x) dx

=

[∫
V

[ε∗0] (x)S ′rs(x)eix·ξ dV (x)

]
ξ=0

= F ([ε∗0] (x)S ′rs(x))ξ=0 . (B.33)

Then, recall Eq. (B.9) to get

[Ars] =
1

(2π)d

[∫
V

[̃ε∗0](ξ − ξ′)S̃ ′rs(ξ
′) dξ′

]
ξ=0

=
1

(2π)d

∫
V

[̃ε∗0](−ξ′)S̃ ′rs(ξ
′) dξ′ (B.34)

Since [̃ε∗0](−ξ) = [̃ε∗0](ξ) we finally arrive at

[Ars] =
1

(2π)d

∫
V

[̃ε∗0](ξ
′)S̃ ′rs(ξ

′) dξ′. (B.35)

Similar procedure then provides

[Brs] =
1

(2π)d

∫
V

[̃σ∗0](ξ
′)S̃ ′rs(ξ

′) dξ′. (B.36)



The Fourier transform, fundamental solutions . . . 146

Note again that Fourier’s transform [̃ε∗0] or [̃σ∗0] can be obtained for any homogeneous
anisotropic reference medium (see previous section for explicit formulae), which is not
generally possible for function [ε∗0] itself. Therefore, once we are able to compute the

values of S̃ ′rs we may evaluate integrals (B.35) and (B.36) by an appropriate numerical
integration procedure.

We close this section by introducing certain universal connections for matrices [Ars]
and [Brs] evaluated for the two-phase composite medium. In particular, recall Eq. (2.12)
to write function S ′rs as

S ′rs(x,x
′) = χr(x, α)(χs(x′, α)− Ss(x′)) = (χr(x, α)− Sr(x))χs(x′, α). (B.37)

The above relation together with Eq. (2.9) imply that (dropping the dependence on x
and α for simplicity)

S ′mm = χm(χm − Sm) = Smm − S2
m,

S ′ff = χf (χf − Sf ) = (1− χm)(1− Sf − χm) = Smm − S2
m = S ′mm, (B.38)

S ′fm = S ′mf = χm(χf − Sf ) = S2
m − S ′mm = −S ′mm. (B.39)

Introducing relations (B.38) into Eq. (B.32) yields

[Amm] = [Aff ] = − [Amf ] ,

[Bmm] = [Bff ] = − [Bmf ] . (B.40)

It now becomes clear that only a single matrix, say [Amm], needs to be evaluated numeri-
cally, which substantially decreases the computational effort. Introducing some auxiliary
matrices

[A] = [Amm] , [B] = cmcf [M0]
−1 − [Bmm] (B.41)

[Kr] = [Lr]− [L0] , [Nr] =
(
([Mr]− [M0])

−1 + [M0]
−1)−1

(B.42)

we can finally obtain, with the help of Eq. (B.40), the matrices [Trs] and [Rrs] in the form

[Trs] = [Kr]
(
cf [Km] + cm [Kf ]− cfcm [A]−1) ([Kf ] + [Km]− [Kr]

+ δrs(1− cr) [A]−1) , (B.43)

[Rrs] = [Nr]
(
cf [Nm] + cm [Nf ]− cfcm [B]−1) ([Nf ] + [Nm]− [Nr]

+ δrs(1− cr) [B]−1) . (B.44)



Appendix C

JUSTIFICATION OF UNCOUPLED MULTI-SCALE
MODELING

The purpose of this appendix is to present a rigorous justification of the uncoupled
homogenization approach to modeling of linearly elastic composite materials subjected,
in addition to mechanical loading, to an eigenstress distribution. The motivation of such
a study is twofold: first, we would like to quantify the assumptions under which such an
uncoupling is appropriate, the second is the analysis of the stress and strain controlled
homogenization which follows quite naturally from the presented theory.

Put in more mathematical terms, our goal is to describe, in a suitable sense, the limit
solution of a system of linear elasticity equations with coefficients rapidly oscillation on
several length scales. The theory of multiscale convergence, introduced by Nguetseng for
two scales [180], further extented by Allaire [5] and finally generalized to the multiscale
case by Allaire and Briane [6], appears to be an elegant framework for the analysis of
the present problem1. There are several reasons which make the multiscale convergence
method an attractive tool of the homogenization theory: it efficiently explores the unit
cell equation obtained by the method of asymptotic expansion [16, 222, 223] to directly
obtain the convergence proof, it is reasonably simple to use, allows a clear interpretations
of macroscopic, mesoscopic and microscopic variables and its ideas can be used as a step-
ping stone for multiscale computational inelasticity [252]. Finally remark that compared
to, e.g., the general theory of H-convergence [175], which is free of any assumptions on
problem geometry, the multiscale convergence theory relies on the microstructure period-
icity. Although this assumption may seem to be restrictive from the theoretical point of
view, it fits perfectly well into the scope of the present work.

An outline of this chapter is as follows. Section C.1 briefly overviews the used notation
and states the basic results of the three-scale convergence theory. Then, the problem to
be analyzed in defined in Section C.2 and the assumptions on the data are introduced.
The homogenization result for the present problem is proven in Section C.3 using the mul-
tiscale convergence theory. Finally, relations between the obtained result and engineering
approaches employed in Chapters 3 and 5 are discussed in Section C.4.

C.1 Multi-scale convergence

Let us begin this section with a brief introduction of notation and function spaces, used
later in the text. The detailed discussion and explanation of individual terms can be

1 See the overview [148] for more detailed discussion and generalization of this method as well as the
inventory of applications to various physical and engineering problems. Further, an excellent discussion
on engineerings aspects of the application of two-scale convergence to problems of nonlinear mechanics
can be found in the recent article [252] which was a great source of inspiration for the work presented
in this Chapter.
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found, e.g., in [23, 97, 123, 208]; see also [117] for spaces of periodic functions. Recall that
in this section, we employ the general notation introduced on page xiii.

Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary. We denote the set of all
symmetric second order tensors as Sd and the symbol Sd×d is used for the set of symmetric
fourth-order tensors with the norm on Sd denoted as ‖a‖2 = a : a. The symbol L2(Ω) is
used, as usual, for the Hilbert space of (equivalence classes of) square Lebesgue integrable
functions on Ω endowed with the scalar product

(u, v)L2(Ω) =

∫
Ω

uv dΩ. (C.1)

By L2(Ω;B) we will denote the set of all strongly measurable functions with values in
a separable Banach space B (see, e.g., [197, Chapter 5] or [213, Section 1.4]) such that
‖u‖L2(Ω;B) <∞, where

‖u‖2
L2(Ω;B) =

∫
Ω

‖u(x)‖2
B dΩ. (C.2)

Therefore, for example, L2(Ω; Rd) denotes the set of vector-valued functions equipped
with the scalar product

(u,v)L2(Ω;Rd) =

∫
Ω

u · v dΩ.

The Hilbert space of functions from u ∈ L2(Ω) with their weak gradient Du in L2(Ω; Rd)
equipped with scalar product

(u, v)W 1,2(Ω) = (u, v)L2(Ω) + (Du,Dv)L2(Ω;Rd) (C.3)

will be denoted as W 1,2(Ω). The symbol C∞
0 (Ω) stands for the set of real-valued infinitely

differentiable functions with a compact support in Ω. The closure of the set C∞
0 (Ω)

with respect to the norm ‖·‖W 1,2(Ω) is denoted as W 1,2
0 (Ω). Similarly, the C∞

per(Y ) is

the space of infinitely differentiable Y -periodic functions. The symbol W 1,2
per(Ω) will be

reserved for the space of functions from the completion of C∞
per(Y ) with respect to the

‖·‖W 1,2(Ω) norm which posses the zero mean value. Finally, D(Ω;C∞
per(Y )) is the space of

measurable function of Ω × Rd such that u(x, ·) ∈ C∞
per(Y ) for any x ∈ Ω and the map

x 7→ u(x, ·) ∈ C∞
per(Y ) is indefinitely differentiable with a compact support in Ω.

Now, we briefly recall the necessary results related to the theory of multiscale conver-
gence and refer an interested reader to [5, 6, 148] for complete proofs. With reference to
Chapter 1, we will restrict our attention to problems with three length scales and denote
by `0, `1 and `2 the characteristic “macroscale”, “mesoscale” and “microscale” dimensions,
respectively. We further assume that they are naturally ordered such that `0 > `1 > `2.
The unit cells corresponding to lenghtscales `1 and `2 will be referred to as Y1 and Y2,
respectively. Again, we assume that Y1 and Y2 are open bounded sets with a Lispschitz
boundary. Finally, we introduce ratios ξ1 = `1/`0 and ξ2 = `2/`0 and assume that they
depend of a single parameter ξ.

Definition 1 (Three-scale convergence) A sequence of function {uξ(x)} in L2(Ω) is
said to three-scale converge to a limit u0(x,y) ∈ L2(Ω × Y1 × Y2) if, for any function ψ
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in L2(Ω;Cper(Y1 × Y2)), we have

lim
ξ→0

∫
Ω

uξ(x)ψ

(
x,

x

ξ1
,
x

ξ2

)
dΩ =

1

|Y1|
1

|Y2|

∫
Ω

∫
Y1

∫
Y2

u0(x,y1,y2)ψ(x,y1,y2) dΩ dY1 dY2.

(C.4)

We denote this mode of convergence as uξ(x)
3−s−→ u0(x,y1,y2).

We further assume that the individual length scales are not of a same order of magni-
tude, i.e., the hypothesis on separation of scales,

lim
ξ→0

ξ2
ξ1

= 0, (C.5)

is valid. Now we are ready to state the key results of the three scale convergence theory.

Theorem 1 ([6, Theorem 1.1]) Let assumption (C.5) hold. Then, for each bounded
sequence {uξ(x)} in L2(Ω), there exists a subsequence {uξ′(x)} and u0(x,y1,y2) ∈ L2(Ω×
Y1 × Y2) such that uξ′

3−s−→ u0.

Theorem 2 ([6, Theorem 2.5]) Let {vξ(x)} be a sequence in L2(Ω) which three-scale
converges to v(x,y1,y2) ∈ L2(Ω× Y1 × Y2) and assume that

lim
ξ→0

‖vξ‖L2(Ω) = ‖v‖L2(Ω×Y1×Y2). (C.6)

Then, for any sequence {uξ(x)} in L2(Ω) which three-scale converges to u(x,y1,y2), one
has

uξ(x)vξ(x) ⇀
1

|Y1|
1

|Y2|

∫
Y1

∫
Y2

u(x,y1,y2)v(x,y1,y2) dY1 dY2 (C.7)

weakly in L1(Ω).

The next theorem states that similar result holds for Sobolev spaces as well.

Theorem 3 ([6, Theorem 1.2]) Let assumption (C.5) be satisfied and {uξ(x)} be a
sequence in W 1,2

0 (Ω) such that

uξ ⇀ u weakly in W 1,2
0 (Ω). (C.8)

Then uξ
3−s−→ u and there exits a subsequence {uξ′} and functions u1(x,y1) ∈ L2(Ω;W 1,2

per(Y1))
and u2(x,y1,y2) ∈ L2(Ω× Y1;W

1,2
per(Y2)) such that

Duξ(x)
3−s−→ Dxu(x) + Dy1u1(x,y1) + Dy2(x,y1,y2). (C.9)
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C.2 Setting of the problem

Consider, for simplicity, a composite body Ω with prescribed zero displacements on
the boundary Γ. The material stiffness tensor is a rapidly oscillating function in the
form Lξ(x) = L (x,x/ξ1,x/ξ2), where Lξ(x) is Yk-periodic with respect to each variable
yk = x/ξk, k = 1, 2. In addition, the body Ω is subjected to Yk-periodic distribution of
eigenstresses λξ(x) = λ (x,x/ξ1,x/ξ2). We assume that there exist constants cL, CL and
Cλ ∈ R+, independent of ξ, such that

cLζ : ζ ≤ ζ : Lξ(x) : ζ, ‖Lξ(x) : ζ‖ ≤ CL‖ζ‖, for any ζ ∈ Sd, (C.10)

‖λξ(x) : ζ‖ ≤ Cλ‖ζ‖, for any ζ ∈ Sd, (C.11)

and that both Lξ(x) and λξ(x) are essentially bounded

Lξ(x) ∈ L∞(Ω; Sd×d), λξ(x) ∈ L∞(Ω; Sd).

Finally, we impose the following, rather technical, assumptions on Lξ(x) and λξ(x)

Lξ(x)
3−s−→ L(x,y1,y2), λξ(x)

3−s−→ λ(x,y1,y2). (C.12)

lim
ξ→0

‖(Lξ)ijkl‖L2(Ω) = ‖Lijkl‖L2(Ω×Y1×Y2), (C.13)

Define the strain tensor ε ∈ L2(Ω; Sd) related to a displacement u ∈ W 1,2(Ω; Rd) as

ε(u) =
1

2

(
Du(x) + (Du(x))T

)
,

while the symbol εyk
(u) used for (Dyk

u + (Dyk
u)T)/2. The weak form of elasticity equa-

tions (3.5)–(3.8) for a heterogenous body Ω can be now written as{
Find uξ ∈ W 1,2

0 (Ω; Rd) such that

aξ(uξ,v) = bξ(v) for every v ∈ W 1,2
0 (Ω; Rd),

(C.14)

where the bilinear form aξ : W 1,2
0 (Ω; Rd) × W 1,2

0 (Ω; Rd) → R and the linear form bξ :
W 1,2

0 (Ω; Rd) → R are defined by

aξ(u,v) =

∫
Ω

ε(u) : Lξ(x) : ε(v) dΩ, (C.15)

bξ(v) =

∫
Ω

(b · v − λξ(x) : ε(v)) dΩ, (C.16)

with the vector of body forces b ∈ L2(Ω; Rd).

C.3 Homogenization result

The goal of this section is to prove the following theorem:
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Theorem 4 Let the assumptions (C.5) and (C.10)–(C.13) hold. Then, the sequence of
solutions {uξ} of the problem (C.14) weakly converges to a function u(x) ∈ W 1,2

0 (Ω; Rd)
and the corresponding sequence of strain tensors {ε(uξ)} three-scale converges to the limit

ε(u) + εy1(u1) + εy2(u2), (C.17)

where u(x),u1(x,y1) and u2(x,y1,y2) are the unique solutions in the product space

H = W 1,2
0 (Ω; Rd)× L2(Ω;W 1,2

per(Y1,Rd))× L2(Ω× Y1;W
1,2
per(Y2,Rd)) (C.18)

of the following problem

a ((u,u1,u2), (v,v1,v2)) = b (v,v1,v2) for all (v,v1,v2) ∈ H (C.19)

where the bilinear form a : H ×H → R is defined as

a ((u,u1,u2), (v,v1,v2)) =
1

|Y1|
1

|Y2|

∫
Ω

∫
Y1

∫
Y2

(ε(u) + εy1(u1) + εy2(u2)) : L(x,y1,y2)

: (ε(v) + εy1(v1) + εy2(v2)) dΩ dY1 dY2

(C.20)

and the linear form b : H → R as

b (v,v1,v2) =

∫
Ω

b · v dΩ (C.21)

− 1

|Y1|
1

|Y2|

∫
Ω

∫
Y1

∫
Y2

λ(x,y1,y2) : (ε(v) + εy1(v1) + εy2(v2)) dΩ dY1 dY2.

Proof. For the sake of clarity we divide the proof into three steps.

Step #1 (A priori estimates) By the assumptions (C.10)1 on the material stiffness tensor
we can easily verify that the bilinear form aξ(·, ·) is bounded and coercive on the space
W 1,2

0 (Ω; Rd). Indeed, using the Korn inequality
√

2‖ε(u)‖L2(Ω;Sd) ≥ ‖Du‖L2(Ω;Rd×d) (see,
e.g., [23, 97]) and Friedrichs’ inequality ‖Du‖L2(Ω;Rd×d) ≥ C(Ω)‖u‖W 1,2

0 (Ω;Rd) [23, 97, 208]
we get

aξ(u,u) =

∫
Ω

ε(u) : Lξ(x) : ε(u) dΩ
by (C.10)1
≥ cL‖ε(u)‖2

L2(Ω;Sd)

Korn

≥ cL
2
‖Du‖2

L2(Ω;Rd×d)

Friedrichs

≥ cLc(Ω)2

2
‖u‖2

W 1,2
0 (Ω;Rd)

and the boundedness of the form aξ(·, ·) follows from

|aξ(u,v)| = |
∫

Ω

ε(u) : Lξ(x) : ε(v) dΩ| ≤
∫

Ω

‖ε(u)‖‖Lξ(x) : ε(v)‖ dΩ

by (C.10)2
≤ CL‖u‖W 1,2

0 (Ω;Rd)‖v‖W 1,2
0 (Ω;Rd).

Similarly, the boundedness of the linear form b(·) yields from the assumption (C.11),

|bξ(v)| = |
∫

Ω

(b · v − λξ(x) : ε(v)) dΩ|
by (C.11)

≤
(
Cλ + ‖b‖L2(Ω;Rd)

)
‖v‖W 1,2

0 (Ω;Rd).
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Hence, the existence and uniqueness of the solution to the problem (C.14) follows
from the Lax-Milgram lemma [23, 97, 208]. Moreover, the norm of the solution uξ can be
bounded by a constant C independent of ξ,

‖uξ‖W 1,2
0 (Ω;Rd) ≤ C.

Finally, since the space W 1,2
0 (Ω; Rd) is reflexive hence weakly compact, we can extract

from the sequence of solutions {uξ} a weakly converging subsequence {uξ′},

uξ′ ⇀ u weakly in W 1,2
0 (Ω; Rd).

Step #2 (Limit passage) From Theorem 3 it follows that there exists a subsequence of
solutions {uξ′′} and functions u1 ∈ L2(Ω;W 1,2

per(Y1,Rd)) and u2 ∈ L2(Ω×Y1;W
1,2
per(Y2,Rd))

such that
ε(uξ′′)

3−s−→ ε(u) + εy1(u1) + εy2(u2). (C.22)

Consider a smooth test function wξ of the form

wξ(x) = w(x) + ξ1w1(x,x/ξ1) + ξ2w2(x,x/ξ1,x/ξ2), (C.23)

where w ∈ C∞
0 (Ω; Rd), w1 ∈ D(Ω;C∞

per(Y1,Rd)) and w2 ∈ D(Ω × Y1;C
∞
per(Y2,Rd)). The

corresponding strain tensor is given by2

ε(wξ) = ε(w) + ξ1ε(w1) + εy1(w1) + ξ2εy2(w2) +
ξ2
ξ1

εy1(w2) + εy2(w2).

The assumptions (C.12)1 and (C.13) authorize us to use the product Lξ′′(x) : ε(wξ) as the
function vξ appearing in Theorem 2. Moreover, by the condition of scale separation (C.5),
we get3

Lξ′′ : ε(wξ)
3−s−→ L(x,y1,y2) : (ε(w) + εy1(w1) + εy2(w2)) (C.24)

Hence

aξ(uξ′′ ,wξ) =

∫
Ω

ε(uξ′′) : Lξ′′(x) : ε(wξ) dΩ

Theorem 2−→
1

|Y1|
1

|Y2|

∫
Ω

∫
Y1

∫
Y2

(ε(u) + εy1(u1) + εy2(u2)) : L(x,y1,y2)

: (ε(w) + εy1(w1) + εy2(w2)) dΩ dY1 dY2

= a ((u,u1,u2), (w,w1,w2)) .

By density of the test functions (C.23), this result holds for any (v,v1,v2) ∈ V . Similar
procedure can be employed to pass to the limit in the term b(·). Choosing the test function

2 Recall that y1 = x/ξ1 and y2 = x/ξ2.
3 Note that we have used the fact that for any oscillating function ϕ ∈ L2(Ω; Cper(Y1×Y2)) the following
convergence result holds (see, e.g., [6] and [148, Theorem 3])∫

Ω

ϕ(x,x/ξ1,x/ξ2)2 dΩ → 1
|Y1|

1
|Y2|

∫
Ω

∫
Y1

∫
Y2

ϕ(x,y1,y2)2 dΩdY1 dY2.
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wξ in the same form we get∫
Ω

λξ′′(x) : ε(wξ) dΩ
by (C.12)2 and

Theorem 2−→

1

|Y1|
1

|Y2|

∫
Ω

∫
Y1

∫
Y2

λ(x,y1,y2) : (ε(w) + εy1(w1) + εy2(w2)) dΩ dY1 dY2

and ∫
Ω

b ·wξ dΩ −→
∫

Ω

b ·w dΩ

Thus, we have just shown that

bξ′′(wξ) → b(w,w1,w2) (C.25)

for any smooth test function wξ and, by density, for any (v,v1,v2) ∈ V .

Step #3 (Uniqueness of the solution) Let us endow the Hilbert spaceH, defined in (C.18),
with the norm

‖U‖2
H = ‖Du‖2

L2(Ω;Rd×Rd) + ‖Dy1u1‖2
L2(Ω×Y1;Rd×Rd) + ‖Dy2u2‖2

L2(Ω×Y1×Y2;Rd×Rd), (C.26)

where, for the notational simplicity, we introduced U = (u,u1,u2). Before proceeding
with the “homogenization” proof, we will state the following result:

Lemma 1 The norm ‖·‖H and the norm ‖·‖W defined by

‖U‖2
W = ‖u‖2

W 1,2
0 (Ω;Rd) + ‖u1‖2

L2(Ω;W 1,2
per(Y1,Rd)) + ‖u2‖2

L2(Ω×Y1;W 1,2
per(Y2,Rd)) (C.27)

are equivalent on H.

Proof. Recall that two norms ‖·‖H and ‖·‖W on H are equivalent if there exist two positive
constants C1 and C2 such that, for every U ∈ H,

C1‖U‖H ≤ ‖U‖W ≤ C2‖U‖H .

Writing the individual terms in the definition of the ‖·‖W in more details using rela-
tions (C.2) and (C.3), we arrive at

‖U‖2
W =

≥0︷ ︸︸ ︷
‖u‖2

L2(Ω;Rd) +‖Du‖2
L2(Ω,Rd×d)

+

∫
Ω

( ≥0︷ ︸︸ ︷
‖u1‖2

L2(Y1,Rd) +‖Dy1u1‖2
L2(Y1,Rd×d)

)
dΩ

+

∫
Ω

∫
Y1

( ≥0︷ ︸︸ ︷
‖u2‖2

L2(Y2,Rd) +‖Dy2u2‖2
L2(Y2,Rd×d)

)
dY1 dΩ

≥ ‖Du‖2
L2(Ω;Rd×Rd) + ‖Dy1u1‖2

L2(Ω×Y1;Rd×Rd) + ‖Dy2u2‖2
L2(Ω×Y1×Y2;Rd×Rd)

= ‖U‖2
H ,
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which proves the first inequality. To show the validity of the opposite inequality, recall
that by the Friedrichs inequality [117, 208],

∫
Ω
u2 dΩ ≤ C

∫
Ω
‖Du‖2 dΩ for any bounded

set Ω and u ∈ W 1,2
0 (Ω) while, thanks to the Poincaré inequality [117, 208],

∫
Ω
u2 dΩ ≤

C{
(∫

Ω
u dΩ

)2
+
∫

Ω
‖Du‖2 dΩ}, for any Lipschitz set Ω and u ∈ W 1,2(Ω) ⊃ W 1,2

per(Ω). Note
that, thanks to the definition of the W 1,2

per(Ω),
∫

Ω
u dΩ = 0 for any u ∈ W 1,2

per(Ω). Hence,

‖U‖2
W =

≤C‖Du‖2
L2(Ω,Rd×d)

(Friedrichs)︷ ︸︸ ︷
‖u‖2

L2(Ω;Rd) +‖Du‖2
L2(Ω,Rd×d)

+

∫
Ω

(≤C‖Dy1u1‖2

L2(Y1,Rd×d)
(Poincare)︷ ︸︸ ︷

‖u1‖2
L2(Y1,Rd) +‖Dy1u1‖2

L2(Y1,Rd×d)

)
dΩ

+

∫
Ω

∫
Y1

(≤C‖Dy2u2‖2

L2(Y2,Rd×d)
(Poincare)︷ ︸︸ ︷

‖u2‖2
L2(Y2,Rd) +‖Dy2u2‖2

L2(Y2,Rd×d)

)
dY1 dΩ

≤ C
(
‖Du‖2

L2(Ω;Rd×Rd) + ‖Dy1u1‖2
L2(Ω×Y1;Rd×Rd) + ‖Dy2u2‖2

L2(Ω×Y1×Y2;Rd×Rd)

)
= C‖U‖2

H .

�
Now, if we prove that the bilinear form a(·, ·) (C.20) is coercive and bounded on H, the

uniqueness of the solution follows directly from the Lax-Milgram lemma. The verification
of the ellipticity follows the procedure in Step 1,

a(U,U) =

1

|Y1|
1

|Y2|

∫
Ω

∫
Y1

∫
Y2

(ε(u) + εy1(u1) + εy2(u2)) : L(x,y1,y2)

: (ε(u) + εy1(u1) + εy2(u2)) dΩ dY1 dY2

by (C.10)1
≥ cL

|Y1||Y2|

∫
Ω

∫
Y1

∫
Y2

‖ε(u) + εy1(u1) + εy2(u2)‖2 dΩ dY1 dY2

=

cL
|Y1||Y2|

∫
Ω

∫
Y1

∫
Y2

(
‖ε(u)‖2

L2(Ω;Sd) + ‖εy1(u1)‖2
L2(Ω×Y1;Sd)

+‖εy2(u2)‖2
L2(Ω×Y1×Y2;Sd)

)
dΩ dY1 dY2

(C.28)

+

2cL
|Y1||Y2|

∫
Ω

∫
Y1

∫
Y2

(
ε(u) : εy1(u1) + ε(u) : εy2(u2)

+ εy1(u1) : εy2(u2)

)
dΩ dY1 dY2

(C.29)

By the Korn inequality, the term (C.28) can be, similarly to the Step 1, estimated as

(C.28) ≥ cL
2|Y1||Y2|

‖U‖2
H ,
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while (C.29) vanishes. To demonstrate this, consider the term∫
Ω

∫
Y1

ε(u(x)) : εy1(u1(x,y1)) dΩ dY1

by Green’s
theorem=

∫
Ω

∫
Γ1

n(y1) · ε(x) · u1(x,y1) dΩ dΓ1︸ ︷︷ ︸
=0 by Y1 periodicity of u1

−
∫

Ω

∫
Y1

εy1(ε(u(x))) dΩ dY1︸ ︷︷ ︸
=0

= 0.

Using analogous procedure, it can be easily seen that also the remaining terms in (C.29)
are equal to zero.

Let us now check that a(·, ·) is bounded. The assumption (C.10)2 implies that

|a(U,V)| =

1

|Y1|
1

|Y2|
|
∫

Ω

∫
Y1

∫
Y2

(ε(u) + εy1(u1) + εy2(u2)) : L(x,y1,y2)

: (ε(v) + εy1(v1) + εy2(v2)) dΩ dY1 dY2|

≤
1

|Y1|
1

|Y2|

∫
Ω

∫
Y1

∫
Y2

‖ε(u) + εy1(u1) + εy2(u2)‖

‖L(x,y1,y2) : (ε(v) + εy1(v1) + εy2(v2)) ‖dΩdY1 dY2

by (C.10)2
≤

CL

|Y1||Y2|

∫
Ω

∫
Y1

∫
Y2

‖ε(u) + εy1(u1) + εy2(u2)‖

‖ε(v) + εy1(v1) + εy2(v2)‖ dΩ dY1 dY2

≤ CL

|Y1||Y2|
‖U‖H‖V‖H .

Similarly, the assumption (C.11) ensures that the linear form b(·) is bounded on H.
Now, from the uniqueness of the solution U, it follows that the whole sequences of

solutions and corresponding strain tensors, not just subsequences {uξ′} and {ε(uξ′′)},
converge to their limits.

�

C.4 Strain and stress controlled homogenization

The convergence result obtained in the previous section can be used for the analysis of
stress and strain controlled homogenization. To this end, exploring the independence
of test functions v, v1 and v2, we may reformulate the problem (C.20) in the form of
uncoupled three scale homogenized system. Thus, we may separately investigate the
microscale, mesoscale and macroscale levels with a connection to the strain and stress
controlled homogenization.

Microscale problem (test function v2). We start with the microscale problem stated
as: For the fixed coordinates x ∈ Ω and y1 ∈ Y1 and a given overall microscale strain
Emicro(x,y1) ∈ Sd find the microscale fluctuating displacement field u2(x,y1, ·) ∈ W 1,2

per(Y2)
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such that

∫
Y2

εy2(v2) :

(
L(x,y1,y2) :

( Emicro(x,y1)︷ ︸︸ ︷
ε(u) + εy1(u1) +εy2(u2)) + λ(x,y1,y2)

))
dY2 = 0 (C.30)

holds for all v2 ∈ W 1,2
per(Y2). Note that this variational formulation is actually identical to

the strain controlled homogenization approach (3.20).
The linearity of the problem allows us to relate the microscale strain field εy2(u2) to

the overall strain Emicro by means of solutions of the well-known unit cell problem [16,
117, 241]: Find displacement fields χkl(x,y1, ·) ∈ W 1,2

per(Y2,Rd), k = 1, . . . , d, l = 1, . . . , d
such that, for all v2 ∈ W 1,2

per(Y2,Rd),∫
Y2

εy2(v2) : L(x,y1,y2) : εy2(χ
kl) dY2 = −

∫
Y2

εy2(v2) : L(x,y1,y2) : Ikl dY2,

where the second-order tensor of “unit strain impulses” is provided by relation (Ikl)ij =
(δikδjk + δilδjk) /2. Further, denote as χλ(x,y1, ·) ∈ W 1,2

per(Y2,Rd) the solution of following
variational problem4∫

Y2

εy2(v2) : L(x,y1,y2) : εy2(χ
λ) dY2 = −

∫
Y2

εy2(v2) : λ(x,y1,y2) dY2.

The microscale stresses now can be expressed by means of microscale strain Emicro,

σ(x,y1,y2) = L(x,y1,y2) :

(
B(x,y1,y2) : Emicro(x,y1)− εy2

(
χλ(x,y1,y2)

))
, (C.31)

where the fourth-order strain concentration tensor B is defined as

Bijkl = Iijkl +
(
εy2(χ

kh)
)

ij
.

Finally, averaging the stress tensor with respect to the microscale unit cell Y2 yields

Σmicro(x,y1) =
1
|Y2|

∫
Y2

L(x,y1,y2) :
(

B(x,y1,y2) : Emicro(x,y1)− εy2

(
χλ(x,y1,y2)

))
dY2

= Lhom
micro(x,y1) : Emicro(x,y1) + Λhom

micro(x,y1). (C.32)

Note that the procedure of determination of effective material behavior is actually identical
to the engineering approach used in Section 3.2.

Mesoscale problem (test function v1) Having solved the microscale problem, we
can move one level up and consider a mesoscale problem stated as follows: For a fixed

4 A concrete example of function χ12 for a hexagonal unit cell can be seen in Figs. 3.11a–c, while
the individual components of the field εy2(χ

λ) are shown in Figs. 3.11d–f. See also Fig. 5.10 for the
mesoscale level.
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coordinate x ∈ Ω and mesoscale overall strain tensor Emeso(x) ∈ Sd find the mesoscale
fluctuating displacement u1(x, ·) ∈ W 1,2

per(Y1) such that, for any v1 ∈ W 1,2
per(Y1),

∫
Y1

εy1(v1) :
1
|Y2|

(∫
Y2

L(x,y1,y2) :
(=Emeso(x)︷︸︸︷

ε(u) +εy1(u1) + εy2(u2)
)

+ λ(x,y1,y2) dY2

)
︸ ︷︷ ︸

=Σmicro(x,y1)

dY1

= 0. (C.33)

Observe that the underbraced term is nothing else that the overall microscale stress tensor
Σmicro defined by Eq. (C.32). Therefore, the mesoscale problem can be reformulated as
the variational problem∫

Y1

εy1(v1) : Lhom
micro(x,y1) : (ε(u) + εy1(v1)) dY1 = −

∫
Y1

εy1(v1) : Λhom
micro(x,y1) dY1.

(C.34)
Repeating in verbatim the procedure described for the microscale problem, the mesoscopic
constitutive stress-strain relationship can be put in the form

Σmeso(x) =
1

|Y1|

∫
Y1

Σmicro(x,y1) dY1 = Lhom
meso(x) : Emeso(x) + Λhom

meso(x), (C.35)

which is, again, fully consistent with procedure introduced in Chapter 5.

Macroscale problem (test function v). Finally, we are left with only unresolved
macroscopic scale. To that end, we solve the macroscopic problem

∫
Ω

ε(v) :

=Σmeso(x)︷ ︸︸ ︷(
1
|Y1|

∫
Y1

1
|Y2|

∫
Y2

L(x,y1,y2) : (ε(u) + εy1(u1) + εy2(u2)) + λ(x,y1,y2) dY2 dY1

)
dΩ

=

∫
Ω

g · v dΩ, (C.36)

i.e., we have to find the microscopic displacement field u ∈ W 1,2
0 (Ω; Rd), such that∫

Ω

ε(v) : Lhom
meso(x) : ε(u) dΩ =

∫
Ω

(
b · v − ε(v) : Λhom

meso(x)
)

dΩ (C.37)

holds for all v ∈ W 1,2
0 (Ω; Rd).

Stress controlled homogenization. To recover stress-controlled homogenization for-
mula, we take into account that for this particular loading conditions, overall strains on
individual levels, Emicro and Emeso are now unknown variables. The definitions of overall
stresses Σmicro and Σmeso, introduced in Eqs. (C.33) and (C.36), however, can be directly
used to obtain a well-posed problem.

Indeed, consider the microscale problem which now reads as: For the fixed coordinates
x ∈ Ω and y1 ∈ Y1 and a given overall microscale stress Σmicro(x,y1) ∈ Sd find the
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microscale fluctuating displacement field u2(x,y1, ·) ∈ W 1,2
per(Y2) and overall microscopic

strain Emicro(x,y1) ∈ Sd, such that, for all v2 ∈ W 1,2
per(Y2),

1

|Y2|

∫
Y2

L(x,y1,y2) : (Emicro(x,y1) + εy2(u2)) dY2 = Σmicro(x,y1)

− 1

|Y2|

∫
Y2

λ(x,y1,y2) dY2,∫
Y2

εy2(v2) : L(x,y1,y2) : (Emicro(x,y1) + εy2(u2)) dY2 = −
∫

Y2

εy2(v2) : λ(x,y1,y2) dY2.

i.e., we acquire exactly the same formulation as in Section 3.2.3. Similarly, using the
definition of microscale homogenized properties, we can easily arrive at the system of
mesoscale equations in the form

1

|Y1|

∫
Y1

Lhom
micro(x,y1) : (Emeso(x) + εy1(u1)) dY1 = Σmeso(x)

− 1

|Y1|

∫
Y1

Λhom
micro(x,y1) dY1,∫

Y1

εy1(v1) : Lhom
micro(x,y1) : (Emeso(x) + εy1(u1)) dY1 = −

∫
Y1

εy1(v1) : Λhom
micro(x,y1) dY1.

Finally, we solve the following problem on the mesoscale level∫
Ω

ε(v) : Σmeso(x) dΩ =

∫
Ω

v · b dΩ, for any v ∈ W 1,2
0 (Ω; Rd).

We conclude this section by a brief discussion on practical aspects following from
results of the presented theory. First, it should be stresses that the solution of homoge-
nized system is only a limit solution as ξ → 0. In the practical problems, however, this
ratio is actually given and cannot be arbitrary changed; on the other hand, it is typi-
cally so small that direct numerical investigation is not possible. The two scale problem
with periodic microstructure but with a fixed ratio ξ was first addressed by Babuška [9],
further extended by Morgan and Babuška [171, 170]; the results of these analyses have
been recently incorporated into the framework of generalized Finite Element methods
in [155, 156]. In the general multiscale case, to author’s best knowledge, such an analysis
is still lacking. It is, however, a widely accepted heuristic that the homogenized system is
appropriate for simulation of real composite materials as long as the lengthscales ξ1 and ξ2
are reasonably small with respect to typical macrostructural dimension and wavelengths
of imposed loads.

The assumptions on material data, Eqs. (C.10)–(C.12), appear to be sufficiently
general to be satisfied in vast majority of problems of practical interest. The assump-
tion (C.13), however, is seemingly purely technical and rather restrictive. Fortunately,
this condition is known to hold in several important cases [6, Remark 2.13]; in particular,
it is satisfied if the individual entries of material stiffness tensor L(x,y1,y2) are finite
sums of products of the type

ϕ(x)ϕ1(y1)ϕ2(y2) with ϕ(x) ∈ L∞(Ω), ϕ1(y1) ∈ L∞per(Y1), ϕ2(y2) ∈ L∞per(Y2).

This condition is sufficiently general to present no practical obstacles.
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